Domain Adaptable Prescriptive AI Agent for Enterprise
- URL: http://arxiv.org/abs/2407.20447v1
- Date: Mon, 29 Jul 2024 23:00:32 GMT
- Title: Domain Adaptable Prescriptive AI Agent for Enterprise
- Authors: Piero Orderique, Wei Sun, Kristjan Greenewald,
- Abstract summary: This work focuses on developing the proof-of-concept agent, PrecAIse, a domain-adaptable conversational agent equipped with a suite of causal and prescriptive tools.
The presented Natural Language User Interface (NLUI) enables users with limited expertise in machine learning and data science to harness prescriptive analytics in their decision-making processes.
- Score: 2.6207267039700888
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite advancements in causal inference and prescriptive AI, its adoption in enterprise settings remains hindered primarily due to its technical complexity. Many users lack the necessary knowledge and appropriate tools to effectively leverage these technologies. This work at the MIT-IBM Watson AI Lab focuses on developing the proof-of-concept agent, PrecAIse, a domain-adaptable conversational agent equipped with a suite of causal and prescriptive tools to help enterprise users make better business decisions. The objective is to make advanced, novel causal inference and prescriptive tools widely accessible through natural language interactions. The presented Natural Language User Interface (NLUI) enables users with limited expertise in machine learning and data science to harness prescriptive analytics in their decision-making processes without requiring intensive computing resources. We present an agent capable of function calling, maintaining faithful, interactive, and dynamic conversations, and supporting new domains.
Related papers
- The Role of Accuracy and Validation Effectiveness in Conversational Business Analytics [0.0]
This study examines conversational business analytics, an approach that utilizes AI to address the technical competency gaps that hinder end users effectively using traditional self-service analytics.
By facilitating natural language interactions, conversational business analytics aims to empower users to independently retrieve data and generate insights.
arXiv Detail & Related papers (2024-11-18T23:58:24Z) - Asynchronous Tool Usage for Real-Time Agents [61.3041983544042]
We introduce asynchronous AI agents capable of parallel processing and real-time tool-use.
Our key contribution is an event-driven finite-state machine architecture for agent execution and prompting.
This work presents both a conceptual framework and practical tools for creating AI agents capable of fluid, multitasking interactions.
arXiv Detail & Related papers (2024-10-28T23:57:19Z) - The Ethics of Advanced AI Assistants [53.89899371095332]
This paper focuses on the opportunities and the ethical and societal risks posed by advanced AI assistants.
We define advanced AI assistants as artificial agents with natural language interfaces, whose function is to plan and execute sequences of actions on behalf of a user.
We consider the deployment of advanced assistants at a societal scale, focusing on cooperation, equity and access, misinformation, economic impact, the environment and how best to evaluate advanced AI assistants.
arXiv Detail & Related papers (2024-04-24T23:18:46Z) - AUTONODE: A Neuro-Graphic Self-Learnable Engine for Cognitive GUI Automation [0.0]
Autonomous User-interface Transformation through Online Neuro-graphic Operations and Deep Exploration.
Our engine empowers agents to comprehend and implement complex, adapting to dynamic web environments with unparalleled efficiency.
The versatility and efficacy of AUTONODE are demonstrated through a series of experiments, highlighting its proficiency in managing a diverse array of web-based tasks.
arXiv Detail & Related papers (2024-03-15T10:27:17Z) - Personal LLM Agents: Insights and Survey about the Capability, Efficiency and Security [34.67477557318947]
We focus on Personal LLM Agents, which are LLM-based agents that are deeply integrated with personal data and personal devices.
We envision that Personal LLM Agents will become a major software paradigm for end-users in the upcoming era.
arXiv Detail & Related papers (2024-01-10T09:25:45Z) - Combatting Human Trafficking in the Cyberspace: A Natural Language
Processing-Based Methodology to Analyze the Language in Online Advertisements [55.2480439325792]
This project tackles the pressing issue of human trafficking in online C2C marketplaces through advanced Natural Language Processing (NLP) techniques.
We introduce a novel methodology for generating pseudo-labeled datasets with minimal supervision, serving as a rich resource for training state-of-the-art NLP models.
A key contribution is the implementation of an interpretability framework using Integrated Gradients, providing explainable insights crucial for law enforcement.
arXiv Detail & Related papers (2023-11-22T02:45:01Z) - Enabling High-Level Machine Reasoning with Cognitive Neuro-Symbolic
Systems [67.01132165581667]
We propose to enable high-level reasoning in AI systems by integrating cognitive architectures with external neuro-symbolic components.
We illustrate a hybrid framework centered on ACT-R and we discuss the role of generative models in recent and future applications.
arXiv Detail & Related papers (2023-11-13T21:20:17Z) - AI for IT Operations (AIOps) on Cloud Platforms: Reviews, Opportunities
and Challenges [60.56413461109281]
Artificial Intelligence for IT operations (AIOps) aims to combine the power of AI with the big data generated by IT Operations processes.
We discuss in depth the key types of data emitted by IT Operations activities, the scale and challenges in analyzing them, and where they can be helpful.
We categorize the key AIOps tasks as - incident detection, failure prediction, root cause analysis and automated actions.
arXiv Detail & Related papers (2023-04-10T15:38:12Z) - Artificial Intelligence in Governance, Risk and Compliance: Results of a study on potentials for the application of artificial intelligence (AI) in governance, risk and compliance (GRC) [0.0]
GRC (Governance, Risk and Compliance) means an integrated governance-approach.
Governance functions are interlinked and not separated from each other.
Artificial intelligence is being used in GRC for processing and analysis of unstructured data sets.
arXiv Detail & Related papers (2022-12-07T12:36:10Z) - Which Design Decisions in AI-enabled Mobile Applications Contribute to
Greener AI? [7.194465440864905]
This report consists of a plan to conduct an empirical study to quantify the implications of the design decisions on AI-enabled applications performance.
We will implement both image-based and language-based neural networks in mobile applications to solve multiple image classification and text classification problems.
arXiv Detail & Related papers (2021-09-28T07:30:28Z) - Counterfactual Explanations as Interventions in Latent Space [62.997667081978825]
Counterfactual explanations aim to provide to end users a set of features that need to be changed in order to achieve a desired outcome.
Current approaches rarely take into account the feasibility of actions needed to achieve the proposed explanations.
We present Counterfactual Explanations as Interventions in Latent Space (CEILS), a methodology to generate counterfactual explanations.
arXiv Detail & Related papers (2021-06-14T20:48:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.