Empowering Large Scale Quantum Circuit Development: Effective Simulation of Sycamore Circuits
- URL: http://arxiv.org/abs/2411.12131v1
- Date: Tue, 19 Nov 2024 00:13:44 GMT
- Title: Empowering Large Scale Quantum Circuit Development: Effective Simulation of Sycamore Circuits
- Authors: Venkateswaran Kasirajan, Torey Battelle, Bob Wold,
- Abstract summary: This work demonstrates that circuits as large and complex as the random circuit sampling (RCS) circuits can be effectively simulated with high fidelity on classical systems commonly available to developers.
This capability empowers researchers and developers to build, debug, and execute large-scale quantum circuits ahead of the general availability of low-error rate quantum computers or deploy commercial-grade applications.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Simulating quantum systems using classical computing equipment has been a significant research focus. This work demonstrates that circuits as large and complex as the random circuit sampling (RCS) circuits published as a part of Google's pioneering work [4-7] claiming quantum supremacy can be effectively simulated with high fidelity on classical systems commonly available to developers, using the universal quantum simulator included in the Quantum Rings SDK, making this advancement accessible to everyone. This study achieved an average linear cross-entropy benchmarking (XEB) score of 0.678, indicating a strong correlation with ideal quantum simulation and exceeding the XEB values currently reported for the same circuits today while completing circuit execution in a reasonable timeframe. This capability empowers researchers and developers to build, debug, and execute large-scale quantum circuits ahead of the general availability of low-error rate quantum computers and invent new quantum algorithms or deploy commercial-grade applications.
Related papers
- Redesign Quantum Circuits on Quantum Hardware Device [6.627541720714792]
We present a new architecture which enables one to redesign large-scale quantum circuits on quantum hardware.
For concreteness, we apply this architecture to three crucial applications in circuit optimization, including the equivalence checking of (non-) parameterized circuits.
The feasibility of our approach is demonstrated by the excellent results of these applications, which are implemented both in classical computers and current NISQ hardware.
arXiv Detail & Related papers (2024-12-30T12:05:09Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Q-gen: A Parameterized Quantum Circuit Generator [0.6062751776009752]
We introduce Q-gen, a high-level, parameterized quantum circuit generator incorporating 15 realistic quantum algorithms.
Q-gen is an open-source project that serves as the entrance for users with a classical computer science background to dive into the world of quantum computing.
arXiv Detail & Related papers (2024-07-26T12:22:40Z) - A Scalable FPGA Architecture for Quantum Computing Simulation [0.0]
A quantum computing simulation provides the opportunity to explore the behaviors of quantum circuits.
Simulating quantum circuits requires geometric time and space complexities.
A scalable accelerator architecture is proposed to provide a high performance, highly parallel, accelerator.
arXiv Detail & Related papers (2024-07-08T21:48:28Z) - Quantum Compiling with Reinforcement Learning on a Superconducting Processor [55.135709564322624]
We develop a reinforcement learning-based quantum compiler for a superconducting processor.
We demonstrate its capability of discovering novel and hardware-amenable circuits with short lengths.
Our study exemplifies the codesign of the software with hardware for efficient quantum compilation.
arXiv Detail & Related papers (2024-06-18T01:49:48Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - KetGPT -- Dataset Augmentation of Quantum Circuits using Transformers [1.236829197968612]
Quantum algorithms, represented as quantum circuits, can be used as benchmarks for assessing the performance of quantum systems.
Random circuits are, however, not representative benchmarks as they lack the inherent properties of real quantum algorithms.
This research aims to enhance the existing quantum circuit datasets by generating what we refer to as realistic-looking' circuits.
arXiv Detail & Related papers (2024-02-20T20:02:21Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - On-the-fly Tailoring towards a Rational Ansatz Design for Digital
Quantum Simulations [0.0]
It is imperative to develop low depth quantum circuits that are physically realizable in quantum devices.
We develop a disentangled ansatz construction protocol that can dynamically tailor an optimal ansatz.
The construction of the ansatz may potentially be performed in parallel quantum architecture through energy sorting and operator commutativity prescreening.
arXiv Detail & Related papers (2023-02-07T11:22:01Z) - An Optimized Quantum Implementation of ISD on Scalable Quantum Resources [2.274915755738124]
We show that Prange's ISD algorithm can be implemented rather efficiently on a quantum computer.
We leverage the idea of classical co-processors to design hybrid classical-quantum trade-offs.
arXiv Detail & Related papers (2021-12-12T06:01:10Z) - Tensor Network Quantum Virtual Machine for Simulating Quantum Circuits
at Exascale [57.84751206630535]
We present a modernized version of the Quantum Virtual Machine (TNQVM) which serves as a quantum circuit simulation backend in the e-scale ACCelerator (XACC) framework.
The new version is based on the general purpose, scalable network processing library, ExaTN, and provides multiple quantum circuit simulators.
By combining the portable XACC quantum processors and the scalable ExaTN backend we introduce an end-to-end virtual development environment which can scale from laptops to future exascale platforms.
arXiv Detail & Related papers (2021-04-21T13:26:42Z) - Electronic structure with direct diagonalization on a D-Wave quantum
annealer [62.997667081978825]
This work implements the general Quantum Annealer Eigensolver (QAE) algorithm to solve the molecular electronic Hamiltonian eigenvalue-eigenvector problem on a D-Wave 2000Q quantum annealer.
We demonstrate the use of D-Wave hardware for obtaining ground and electronically excited states across a variety of small molecular systems.
arXiv Detail & Related papers (2020-09-02T22:46:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.