論文の概要: Tangential Randomization in Linear Bandits (TRAiL): Guaranteed Inference and Regret Bounds
- arxiv url: http://arxiv.org/abs/2411.12154v1
- Date: Tue, 19 Nov 2024 01:08:13 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-20 13:37:34.921716
- Title: Tangential Randomization in Linear Bandits (TRAiL): Guaranteed Inference and Regret Bounds
- Title(参考訳): 直線帯域(TRAiL):保証推論とレグレト境界
- Authors: Arda Güçlü, Subhonmesh Bose,
- Abstract要約: 本稿では,線形帯域探索アルゴリズムTRAiLの提案と解析を行う。
TraiLは、設計(回帰器)行列の最小固有値によって測定された推論品質の$Omega(sqrtT)$成長を保証する。
我々は,期待された後悔に対して,任意のアルゴリズムに対して$Omega(sqrtT)$ minimax小境界を特徴付ける。
- 参考スコア(独自算出の注目度): 1.03590082373586
- License:
- Abstract: We propose and analyze TRAiL (Tangential Randomization in Linear Bandits), a computationally efficient regret-optimal forced exploration algorithm for linear bandits on action sets that are sublevel sets of strongly convex functions. TRAiL estimates the governing parameter of the linear bandit problem through a standard regularized least squares and perturbs the reward-maximizing action corresponding to said point estimate along the tangent plane of the convex compact action set before projecting back to it. Exploiting concentration results for matrix martingales, we prove that TRAiL ensures a $\Omega(\sqrt{T})$ growth in the inference quality, measured via the minimum eigenvalue of the design (regressor) matrix with high-probability over a $T$-length period. We build on this result to obtain an $\mathcal{O}(\sqrt{T} \log(T))$ upper bound on cumulative regret with probability at least $ 1 - 1/T$ over $T$ periods, and compare TRAiL to other popular algorithms for linear bandits. Then, we characterize an $\Omega(\sqrt{T})$ minimax lower bound for any algorithm on the expected regret that covers a wide variety of action/parameter sets and noise processes. Our analysis not only expands the realm of lower-bounds in linear bandits significantly, but as a byproduct, yields a trade-off between regret and inference quality. Specifically, we prove that any algorithm with an $\mathcal{O}(T^\alpha)$ expected regret growth must have an $\Omega(T^{1-\alpha})$ asymptotic growth in expected inference quality. Our experiments on the $L^p$ unit ball as action sets reveal how this relation can be violated, but only in the short-run, before returning to respect the bound asymptotically. In effect, regret-minimizing algorithms must have just the right rate of inference -- too fast or too slow inference will incur sub-optimal regret growth.
- Abstract(参考訳): 線形包絡関数のサブレベル集合である作用集合上の線形包帯に対する計算効率の良い後悔-最適探索アルゴリズムであるTRAiL(Tangential Randomization in Linear Bandits)を提案し,解析する。
TRAiLは、正則化された最小二乗を通して線形帯域問題の支配パラメータを推定し、それに投射する前に設定された凸コンパクト作用の接面に沿って、その点推定に対応する報酬最大化作用を摂動する。
行列マーチングラーの発散濃度は, TRAiLが$\Omega(\sqrt{T})$の推論品質を, 設計(回帰器)行列の最小固有値を用いて, 高確率でT$長周期で測定できることを証明した。
この結果に基づいて、$\mathcal{O}(\sqrt{T} \log(T))$ up bound on cumulative regret with probability at least $ 1 - 1/T$ over $T$ periods, and compare TRAiL to other popular algorithm for linear bandits。
次に、様々なアクション/パラメータセットとノイズプロセスをカバーする期待された後悔について、任意のアルゴリズムに対して$\Omega(\sqrt{T})$ minimax小境界を特徴づける。
我々の分析は線形包帯における下界の領域を著しく拡大するだけでなく、副産物として、後悔と推論品質のトレードオフをもたらす。
具体的には、$\mathcal{O}(T^\alpha)$期待後悔成長のアルゴリズムは、期待される推論品質の漸近成長の$\Omega(T^{1-\alpha})$を持つ必要があることを証明する。
アクション集合としての$L^p$単位球に関する我々の実験は、この関係がどのように破られるかを明らかにするが、短絡でのみ、その境界を漸近的に尊重する前にのみ示される。
事実上、後悔を最小化するアルゴリズムは、正しい推論率を持つ必要があります。
関連論文リスト
- Linear bandits with polylogarithmic minimax regret [8.97780713904412]
本研究では,未知ベクトルに近づいた単位球上での動作を選択すると,サブガウス雑音パラメータが線形に消滅する線形帯域の雑音モデルについて検討する。
我々は,この問題に対するアルゴリズムを導入し,この最小限の後悔のスケーリングを,時間軸で$log3(T)$,時間軸で$T$として示す。
論文 参考訳(メタデータ) (2024-02-19T10:56:47Z) - Nearly Minimax Optimal Regret for Learning Linear Mixture Stochastic
Shortest Path [80.60592344361073]
線形混合遷移カーネルを用いた最短経路(SSP)問題について検討する。
エージェントは繰り返し環境と対話し、累積コストを最小化しながら特定の目標状態に到達する。
既存の作業は、イテレーションコスト関数の厳密な下限や、最適ポリシーに対する期待長の上限を仮定することが多い。
論文 参考訳(メタデータ) (2024-02-14T07:52:00Z) - Efficient Frameworks for Generalized Low-Rank Matrix Bandit Problems [61.85150061213987]
一般化線形モデル (GLM) フレームワークを用いて, citelu2021low で提案した一般化低ランク行列帯域問題について検討する。
既存のアルゴリズムの計算不可能性と理論的制約を克服するため,まずG-ESTTフレームワークを提案する。
G-ESTT は $tildeO(sqrt(d_1+d_2)3/2Mr3/2T)$ bound of regret を達成でき、G-ESTS は $tildeO を達成できることを示す。
論文 参考訳(メタデータ) (2024-01-14T14:14:19Z) - Best Policy Identification in Linear MDPs [70.57916977441262]
縮退した線形マルコフ+デルタ決定における最適同定問題について, 生成モデルに基づく固定信頼度設定における検討を行った。
複雑な非最適化プログラムの解としての下位境界は、そのようなアルゴリズムを考案する出発点として用いられる。
論文 参考訳(メタデータ) (2022-08-11T04:12:50Z) - Exploration in Linear Bandits with Rich Action Sets and its Implications
for Inference [23.364534479492715]
期待行列の最小固有値は、アルゴリズムの累積後悔が$sqrtn)$であるときに、$Omega(sqrtn)として増加することを示す。
本研究は, 線形帯域におけるEmphmodel selectionとEmphclusteringの2つの実践シナリオに適用する。
論文 参考訳(メタデータ) (2022-07-23T20:25:07Z) - Nearly Minimax Algorithms for Linear Bandits with Shared Representation [86.79657561369397]
我々は、次元が$d$で、それぞれ$T$のラウンドで$M$リニアバンディットをプレイする設定を考え、これらの$M$リニアバンディットタスクは共通の$k(ll d)$次元リニア表現を共有する。
我々は$widetildeOleft(dsqrtkMT + kMsqrtTright)$ regret boundsを達成する新しいアルゴリズムを考案した。
論文 参考訳(メタデータ) (2022-03-29T15:27:13Z) - Almost Optimal Batch-Regret Tradeoff for Batch Linear Contextual Bandits [45.43968161616453]
バッチ線形文脈帯域に対する最適バッチ-regretトレードオフについて検討する。
時間的地平線が成長するにつれて2相表現を特徴とする後悔の保証を証明します。
また, 動的上界に依存した新しい行列不等式濃度を証明した。
論文 参考訳(メタデータ) (2021-10-15T12:32:33Z) - Gaussian Process Bandit Optimization with Few Batches [49.896920704012395]
有限腕バンディットアルゴリズムにインスパイアされたバッチアルゴリズムを導入する。
O(log T)$ batches in time horizon $T$.sqrtTgamma_T)$ using $O(log T)$ batches in time horizon。
さらに,アルゴリズムの修正版を提案し,バッチ数によって後悔がどう影響するかを特徴付ける。
論文 参考訳(メタデータ) (2021-10-15T00:54:04Z) - Regret Lower Bound and Optimal Algorithm for High-Dimensional Contextual
Linear Bandit [10.604939762790517]
我々は、累積後悔に対して、$mathcalObig((log d)fracalpha+12Tfrac1-alpha2+log Tbig)$をミニマックス下界として証明する。
第2に,汎用的なアッパー信頼境界(UCB)戦略に着想を得た,シンプルで効率的なアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-09-23T19:35:38Z) - Stochastic Bandits with Linear Constraints [69.757694218456]
制約付き文脈線形帯域設定について検討し、エージェントの目標は一連のポリシーを作成することである。
楽観的悲観的線形帯域(OPLB)と呼ばれる,この問題に対する高信頼束縛アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-06-17T22:32:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。