論文の概要: Continuous Control with Coarse-to-fine Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2407.07787v1
- Date: Wed, 10 Jul 2024 16:04:08 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-11 16:02:46.499088
- Title: Continuous Control with Coarse-to-fine Reinforcement Learning
- Title(参考訳): 粗粒度強化学習による連続制御
- Authors: Younggyo Seo, Jafar Uruç, Stephen James,
- Abstract要約: 本稿ではRLエージェントを粗い方法で連続的なアクション空間にズームインするよう訓練するフレームワークを提案する。
我々は、CQN(Coarse-to-fine Q-Network)と呼ばれる、具体的な価値に基づくアルゴリズムをフレームワーク内に導入する。
CQNは、オンライントレーニングの数分後に現実世界の操作タスクを解決するために、しっかりと学習している。
- 参考スコア(独自算出の注目度): 15.585706638252441
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite recent advances in improving the sample-efficiency of reinforcement learning (RL) algorithms, designing an RL algorithm that can be practically deployed in real-world environments remains a challenge. In this paper, we present Coarse-to-fine Reinforcement Learning (CRL), a framework that trains RL agents to zoom-into a continuous action space in a coarse-to-fine manner, enabling the use of stable, sample-efficient value-based RL algorithms for fine-grained continuous control tasks. Our key idea is to train agents that output actions by iterating the procedure of (i) discretizing the continuous action space into multiple intervals and (ii) selecting the interval with the highest Q-value to further discretize at the next level. We then introduce a concrete, value-based algorithm within the CRL framework called Coarse-to-fine Q-Network (CQN). Our experiments demonstrate that CQN significantly outperforms RL and behavior cloning baselines on 20 sparsely-rewarded RLBench manipulation tasks with a modest number of environment interactions and expert demonstrations. We also show that CQN robustly learns to solve real-world manipulation tasks within a few minutes of online training.
- Abstract(参考訳): 近年、強化学習(RL)アルゴリズムのサンプル効率の改善が進んでいるが、実環境に実際に展開可能なRLアルゴリズムを設計することは依然として課題である。
本稿では,RLエージェントの連続的な動作空間へのズームインを粗大な方法で訓練するフレームワークであるCRLについて述べる。
私たちのキーとなるアイデアは、手順を繰り返すことでアクションを出力するエージェントを訓練することです。
一 連続的な作用空間を複数の間隔に区分すること
(ii)次のレベルでさらに離散化するために、最高Q値の区間を選択する。
次に、CRLフレームワークに、Coarse-to-fine Q-Network (CQN)と呼ばれる具体的な値ベースのアルゴリズムを導入する。
実験の結果,CQN は環境相互作用や専門家による実演を多用した 20 個の疎逆 RLBench 操作タスクにおいて,RL と行動クローンベースラインを著しく上回っていることがわかった。
また、CQNはオンライントレーニングの数分後に現実世界の操作タスクをしっかりと学習していることも示している。
関連論文リスト
- Reinforcement Learning with Action Sequence for Data-Efficient Robot Learning [62.3886343725955]
本稿では,行動列上のQ値を出力する批判ネットワークを学習する新しいRLアルゴリズムを提案する。
提案アルゴリズムは,現在および将来の一連の行動の実行結果を学習するために値関数を明示的に訓練することにより,ノイズのある軌道から有用な値関数を学習することができる。
論文 参考訳(メタデータ) (2024-11-19T01:23:52Z) - CTD4 -- A Deep Continuous Distributional Actor-Critic Agent with a Kalman Fusion of Multiple Critics [2.229467987498053]
CDRL(Categorical Distributional Reinforcement Learning)は,複雑なタスクの学習において,より優れたサンプル効率を示す。
本稿では,連続行動空間に適した連続分布モデル自由RLアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-05-04T05:38:38Z) - Action-Quantized Offline Reinforcement Learning for Robotic Skill
Learning [68.16998247593209]
オフライン強化学習(RL)パラダイムは、静的な行動データセットを、データを収集したポリシーよりも優れたパフォーマンスのポリシーに変換するためのレシピを提供する。
本稿では,アクション量子化のための適応型スキームを提案する。
IQL,CQL,BRACといった最先端のオフラインRL手法が,提案手法と組み合わせることで,ベンチマークのパフォーマンスが向上することを示す。
論文 参考訳(メタデータ) (2023-10-18T06:07:10Z) - MARLIN: Soft Actor-Critic based Reinforcement Learning for Congestion
Control in Real Networks [63.24965775030673]
そこで本研究では,汎用的な渋滞制御(CC)アルゴリズムを設計するための新しい強化学習(RL)手法を提案する。
我々の解であるMARLINは、Soft Actor-Criticアルゴリズムを用いてエントロピーとリターンの両方を最大化する。
我々は,MARLINを実ネットワーク上で訓練し,実ミスマッチを克服した。
論文 参考訳(メタデータ) (2023-02-02T18:27:20Z) - Text Generation with Efficient (Soft) Q-Learning [91.47743595382758]
強化学習(RL)は、任意のタスクメトリクスを報酬としてプラグインすることで、より柔軟なソリューションを提供する。
ソフトQ-ラーニングの観点からテキスト生成のための新しいRL式を導入する。
雑音/負の例から学習し、敵攻撃、即時生成など、幅広いタスクにアプローチを適用する。
論文 参考訳(メタデータ) (2021-06-14T18:48:40Z) - Combining Pessimism with Optimism for Robust and Efficient Model-Based
Deep Reinforcement Learning [56.17667147101263]
実世界のタスクでは、強化学習エージェントはトレーニング中に存在しない状況に遭遇する。
信頼性を確保するため、RLエージェントは最悪の状況に対して堅牢性を示す必要がある。
本稿では,Robust Hallucinated Upper-Confidence RL (RH-UCRL)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-03-18T16:50:17Z) - FOCAL: Efficient Fully-Offline Meta-Reinforcement Learning via Distance
Metric Learning and Behavior Regularization [10.243908145832394]
本稿では, オフラインメタ強化学習(OMRL)問題について検討する。これは, 強化学習(RL)アルゴリズムが未知のタスクに迅速に適応できるようにするパラダイムである。
この問題はまだ完全には理解されていないが、2つの大きな課題に対処する必要がある。
我々は、いくつかの単純な設計選択が、最近のアプローチよりも大幅に改善できることを示す分析と洞察を提供する。
論文 参考訳(メタデータ) (2020-10-02T17:13:39Z) - SUNRISE: A Simple Unified Framework for Ensemble Learning in Deep
Reinforcement Learning [102.78958681141577]
SUNRISEは単純な統一アンサンブル法であり、様々な非政治的な深層強化学習アルゴリズムと互換性がある。
SUNRISEは, (a) アンサンブルに基づく重み付きベルマンバックアップと, (b) 最上位の自信境界を用いて行動を選択する推論手法を統合し, 効率的な探索を行う。
論文 参考訳(メタデータ) (2020-07-09T17:08:44Z) - Self-Paced Deep Reinforcement Learning [42.467323141301826]
カリキュラム強化学習(CRL)は、学習を通して調整された一連のタスクに公開することにより、エージェントの学習速度と安定性を向上させる。
実証的な成功にもかかわらず、CRLのオープンな疑問は、手動設計を避けながら、与えられた強化学習(RL)エージェントのカリキュラムを自動的に生成する方法である。
本稿では,カリキュラム生成を推論問題として解釈し,タスク上の分布を段階的に学習し,対象タスクにアプローチすることで解答を提案する。
このアプローチは、エージェントがペースを制御し、しっかりとした理論的動機を持ち、深いRLアルゴリズムと容易に統合できる自動カリキュラム生成につながる。
論文 参考訳(メタデータ) (2020-04-24T15:48:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。