論文の概要: Coarse-to-fine Q-Network with Action Sequence for Data-Efficient Robot Learning
- arxiv url: http://arxiv.org/abs/2411.12155v2
- Date: Wed, 29 Jan 2025 18:56:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-30 15:52:02.082803
- Title: Coarse-to-fine Q-Network with Action Sequence for Data-Efficient Robot Learning
- Title(参考訳): データ効率のよいロボット学習のための行動系列付き粗大Qネットワーク
- Authors: Younggyo Seo, Pieter Abbeel,
- Abstract要約: 本稿では,新しい値に基づく強化学習アルゴリズムであるCQN-AS(Coarse-to-fine Q-Network with Action Sequence)を紹介する。
我々は,53のロボットタスクに対して,疎密かつ高密度な報酬と実演と無実の報酬を用いたアルゴリズムを検討した。
- 参考スコア(独自算出の注目度): 62.3886343725955
- License:
- Abstract: In reinforcement learning (RL), we train a value function to understand the long-term consequence of executing a single action. However, the value of taking each action can be ambiguous in robotics as robot movements are typically the aggregate result of executing multiple small actions. Moreover, robotic training data often consists of noisy trajectories, in which each action is noisy but executing a series of actions results in a meaningful robot movement. This further makes it difficult for the value function to understand the effect of individual actions. To address this, we introduce Coarse-to-fine Q-Network with Action Sequence (CQN-AS), a novel value-based RL algorithm that learns a critic network that outputs Q-values over a sequence of actions, i.e., explicitly training the value function to learn the consequence of executing action sequences. We study our algorithm on 53 robotic tasks with sparse and dense rewards, as well as with and without demonstrations, from BiGym, HumanoidBench, and RLBench. We find that CQN-AS outperforms various baselines, in particular on humanoid control tasks.
- Abstract(参考訳): 強化学習(RL)では、1つのアクションを実行する長期的な結果を理解するために値関数を訓練する。
しかしながら、ロボットの動きは、通常、複数の小さなアクションを実行する集合結果であるので、ロボット工学において各アクションを取る価値は曖昧である。
さらに、ロボットのトレーニングデータは、しばしばノイズの多い軌跡からなり、それぞれの動作はうるさいが、一連の動作は有意義なロボットの動きをもたらす。
これにより、値関数が個々のアクションの効果を理解することがさらに困難になる。
そこで本研究では,アクションシーケンスの実行結果を学習するために,アクションシーケンス上でQ値を出力する批判ネットワークを学習する,新しい値ベースRLアルゴリズムであるCQN-AS(Coarse-to-fine Q-Network with Action Sequence)を紹介する。
提案アルゴリズムは,BiGym,HumanoidBench,RLBenchの53のロボットタスクに対して,疎密かつ高密度な報酬と実演の有無で検討する。
CQN-ASは、特にヒューマノイド制御タスクにおいて、様々なベースラインを上回ります。
関連論文リスト
- FAST: Efficient Action Tokenization for Vision-Language-Action Models [98.15494168962563]
離散コサイン変換に基づくロボット動作のための圧縮に基づく新しいトークン化手法を提案する。
FASTをベースとしたFAST+は,100万個のリアルロボットアクショントラジェクトリに基づいて訓練されたユニバーサルロボットアクショントークンである。
論文 参考訳(メタデータ) (2025-01-16T18:57:04Z) - Autoregressive Action Sequence Learning for Robotic Manipulation [32.9580007141312]
既存の自己回帰型アーキテクチャは、言語モデリングにおいて単語トークンとして順次、エンドエフェクタ・ウェイポイントを生成する。
我々は、因果変換器の単一トークン予測を拡張し、単一のステップで可変数のトークンを予測する。
本稿では,ハイブリッドなアクションシーケンスを生成することで操作タスクを解消するAutoregressive Policyアーキテクチャを提案する。
論文 参考訳(メタデータ) (2024-10-04T04:07:15Z) - Offline Imitation Learning Through Graph Search and Retrieval [57.57306578140857]
模倣学習は、ロボットが操作スキルを取得するための強力な機械学習アルゴリズムである。
本稿では,グラフ検索と検索により,最適下実験から学習する,シンプルで効果的なアルゴリズムGSRを提案する。
GSRは、ベースラインに比べて10%から30%高い成功率、30%以上の熟練を達成できる。
論文 参考訳(メタデータ) (2024-07-22T06:12:21Z) - SAM-E: Leveraging Visual Foundation Model with Sequence Imitation for Embodied Manipulation [62.58480650443393]
Segment Anything (SAM) は、一般化可能なシーン理解とシーケンス模倣のための視覚境界モデルである。
我々は,単一パスにおけるアクションシーケンスの予測を可能にする,新しいマルチチャネルヒートマップを開発した。
論文 参考訳(メタデータ) (2024-05-30T00:32:51Z) - Unsupervised Learning of Effective Actions in Robotics [0.9374652839580183]
ロボット工学における現在の最先端のアクション表現は、ロボットのアクションに対する適切な効果駆動学習を欠いている。
連続運動空間の離散化と「アクションプロトタイプ」生成のための教師なしアルゴリズムを提案する。
シミュレーションされた階段登上補強学習課題について,本手法の評価を行った。
論文 参考訳(メタデータ) (2024-04-03T13:28:52Z) - Self-Improving Robots: End-to-End Autonomous Visuomotor Reinforcement
Learning [54.636562516974884]
模倣と強化学習において、人間の監督コストは、ロボットが訓練できるデータの量を制限する。
本研究では,自己改善型ロボットシステムのための新しい設計手法であるMEDAL++を提案する。
ロボットは、タスクの実施と解除の両方を学ぶことで、自律的にタスクを練習し、同時にデモンストレーションから報酬関数を推論する。
論文 参考訳(メタデータ) (2023-03-02T18:51:38Z) - Lifelong Robotic Reinforcement Learning by Retaining Experiences [61.79346922421323]
多くのマルチタスク強化学習は、ロボットが常にすべてのタスクからデータを収集できると仮定している。
本研究では,物理ロボットシステムの実用的制約を動機として,現実的なマルチタスクRL問題について検討する。
我々は、ロボットのスキルセットを累積的に成長させるために、過去のタスクで学んだデータとポリシーを効果的に活用するアプローチを導出する。
論文 参考訳(メタデータ) (2021-09-19T18:00:51Z) - SQUIRL: Robust and Efficient Learning from Video Demonstration of
Long-Horizon Robotic Manipulation Tasks [8.756012472587601]
深層強化学習(RL)は複雑な操作タスクを学習するために用いられる。
RLは、ロボットが大量の現実世界の経験を収集する必要がある。
SQUIRLは、単一のビデオデモしか持たない、新しいが関連するロングホライゾンタスクを実行する。
論文 参考訳(メタデータ) (2020-03-10T20:26:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。