Building Trust: Foundations of Security, Safety and Transparency in AI
- URL: http://arxiv.org/abs/2411.12275v1
- Date: Tue, 19 Nov 2024 06:55:57 GMT
- Title: Building Trust: Foundations of Security, Safety and Transparency in AI
- Authors: Huzaifa Sidhpurwala, Garth Mollett, Emily Fox, Mark Bestavros, Huamin Chen,
- Abstract summary: We review the current security and safety scenarios while highlighting challenges such as tracking issues, remediation, and the apparent absence of AI model lifecycle and ownership processes.
This paper aims to provide some of the foundational pieces for more standardized security, safety, and transparency in the development and operation of AI models.
- Score: 0.23301643766310373
- License:
- Abstract: This paper explores the rapidly evolving ecosystem of publicly available AI models, and their potential implications on the security and safety landscape. As AI models become increasingly prevalent, understanding their potential risks and vulnerabilities is crucial. We review the current security and safety scenarios while highlighting challenges such as tracking issues, remediation, and the apparent absence of AI model lifecycle and ownership processes. Comprehensive strategies to enhance security and safety for both model developers and end-users are proposed. This paper aims to provide some of the foundational pieces for more standardized security, safety, and transparency in the development and operation of AI models and the larger open ecosystems and communities forming around them.
Related papers
- SoK: Unifying Cybersecurity and Cybersafety of Multimodal Foundation Models with an Information Theory Approach [58.93030774141753]
Multimodal foundation models (MFMs) represent a significant advancement in artificial intelligence.
This paper conceptualizes cybersafety and cybersecurity in the context of multimodal learning.
We present a comprehensive Systematization of Knowledge (SoK) to unify these concepts in MFMs, identifying key threats.
arXiv Detail & Related papers (2024-11-17T23:06:20Z) - Standardization Trends on Safety and Trustworthiness Technology for Advanced AI [0.0]
Recent AI technologies based on large language models and foundation models are approaching or surpassing artificial general intelligence.
These advancements have raised concerns regarding the safety and trustworthiness of advanced AI.
Efforts are being expended to develop internationally agreed-upon standards to ensure the safety and reliability of AI.
arXiv Detail & Related papers (2024-10-29T15:50:24Z) - Towards Assuring EU AI Act Compliance and Adversarial Robustness of LLMs [1.368472250332885]
Large language models are prone to misuse and vulnerable to security threats.
The European Union's Artificial Intelligence Act seeks to enforce AI robustness in certain contexts.
arXiv Detail & Related papers (2024-10-04T18:38:49Z) - Trustworthy, Responsible, and Safe AI: A Comprehensive Architectural Framework for AI Safety with Challenges and Mitigations [14.150792596344674]
AI Safety is an emerging area of critical importance to the safe adoption and deployment of AI systems.
Our goal is to promote advancement in AI safety research, and ultimately enhance people's trust in digital transformation.
arXiv Detail & Related papers (2024-08-23T09:33:48Z) - EAIRiskBench: Towards Evaluating Physical Risk Awareness for Task Planning of Foundation Model-based Embodied AI Agents [47.69642609574771]
Embodied artificial intelligence (EAI) integrates advanced AI models into physical entities for real-world interaction.
Foundation models as the "brain" of EAI agents for high-level task planning have shown promising results.
However, the deployment of these agents in physical environments presents significant safety challenges.
This study introduces EAIRiskBench, a novel framework for automated physical risk assessment in EAI scenarios.
arXiv Detail & Related papers (2024-08-08T13:19:37Z) - Safetywashing: Do AI Safety Benchmarks Actually Measure Safety Progress? [59.96471873997733]
We propose an empirical foundation for developing more meaningful safety metrics and define AI safety in a machine learning research context.
We aim to provide a more rigorous framework for AI safety research, advancing the science of safety evaluations and clarifying the path towards measurable progress.
arXiv Detail & Related papers (2024-07-31T17:59:24Z) - AI Risk Management Should Incorporate Both Safety and Security [185.68738503122114]
We argue that stakeholders in AI risk management should be aware of the nuances, synergies, and interplay between safety and security.
We introduce a unified reference framework to clarify the differences and interplay between AI safety and AI security.
arXiv Detail & Related papers (2024-05-29T21:00:47Z) - Towards Guaranteed Safe AI: A Framework for Ensuring Robust and Reliable AI Systems [88.80306881112313]
We will introduce and define a family of approaches to AI safety, which we will refer to as guaranteed safe (GS) AI.
The core feature of these approaches is that they aim to produce AI systems which are equipped with high-assurance quantitative safety guarantees.
We outline a number of approaches for creating each of these three core components, describe the main technical challenges, and suggest a number of potential solutions to them.
arXiv Detail & Related papers (2024-05-10T17:38:32Z) - Security Risks Concerns of Generative AI in the IoT [9.35121449708677]
In an era where the Internet of Things (IoT) intersects increasingly with generative Artificial Intelligence (AI), this article scrutinizes the emergent security risks inherent in this integration.
We explore how generative AI drives innovation in IoT and we analyze the potential for data breaches when using generative AI and the misuse of generative AI technologies in IoT ecosystems.
arXiv Detail & Related papers (2024-03-29T20:28:30Z) - Towards Safer Generative Language Models: A Survey on Safety Risks,
Evaluations, and Improvements [76.80453043969209]
This survey presents a framework for safety research pertaining to large models.
We begin by introducing safety issues of wide concern, then delve into safety evaluation methods for large models.
We explore the strategies for enhancing large model safety from training to deployment.
arXiv Detail & Related papers (2023-02-18T09:32:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.