Consistency Regularization for Complementary Clothing Recommendations
- URL: http://arxiv.org/abs/2411.12295v1
- Date: Tue, 19 Nov 2024 07:30:07 GMT
- Title: Consistency Regularization for Complementary Clothing Recommendations
- Authors: Shuiying Liao, P. Y. Mok, Li Li,
- Abstract summary: This paper reports on the development of a Consistency Regularized model for Bayesian Personalized Ranking (CR-BPR)
It addresses the drawbacks in existing complementary clothing recommendation methods, namely limited consistency and biased learning caused by diverse feature scale of multi-modal data.
The effectiveness of the CR-BPR model was validated through detailed analysis involving two benchmark datasets.
- Score: 4.698072627654264
- License:
- Abstract: This paper reports on the development of a Consistency Regularized model for Bayesian Personalized Ranking (CR-BPR), addressing to the drawbacks in existing complementary clothing recommendation methods, namely limited consistency and biased learning caused by diverse feature scale of multi-modal data. Compared to other product types, fashion preferences are inherently subjective and more personal, and fashion are often presented, not by individual clothing product, but with other complementary product(s) in a well coordinated fashion outfit. Current complementary-product recommendation studies primarily focus on user preference and product matching, this study further emphasizes the consistency observed in user-product interactions as well as product-product interactions, in the specific context of clothing matching. Most traditional approaches often underplayed the impact of existing wardrobe items on future matching choices, resulting in less effective preference prediction models. Moreover, many multi-modal information based models overlook the limitations arising from various feature scales being involved. To address these gaps, the CR-BPR model integrates collaborative filtering techniques to incorporate both user preference and product matching modeling, with a unique focus on consistency regularization for each aspect. Additionally, the incorporation of a feature scaling process further addresses the imbalances caused by different feature scales, ensuring that the model can effectively handle multi-modal data without being skewed by any particular type of feature. The effectiveness of the CR-BPR model was validated through detailed analysis involving two benchmark datasets. The results confirmed that the proposed approach significantly outperforms existing models.
Related papers
- A Collaborative Ensemble Framework for CTR Prediction [73.59868761656317]
We propose a novel framework, Collaborative Ensemble Training Network (CETNet), to leverage multiple distinct models.
Unlike naive model scaling, our approach emphasizes diversity and collaboration through collaborative learning.
We validate our framework on three public datasets and a large-scale industrial dataset from Meta.
arXiv Detail & Related papers (2024-11-20T20:38:56Z) - MITA: Bridging the Gap between Model and Data for Test-time Adaptation [68.62509948690698]
Test-Time Adaptation (TTA) has emerged as a promising paradigm for enhancing the generalizability of models.
We propose Meet-In-The-Middle based MITA, which introduces energy-based optimization to encourage mutual adaptation of the model and data from opposing directions.
arXiv Detail & Related papers (2024-10-12T07:02:33Z) - Bayesian Joint Additive Factor Models for Multiview Learning [7.254731344123118]
A motivating application arises in the context of precision medicine where multi-omics data are collected to correlate with clinical outcomes.
We propose a joint additive factor regression model (JAFAR) with a structured additive design, accounting for shared and view-specific components.
Prediction of time-to-labor onset from immunome, metabolome, and proteome data illustrates performance gains against state-of-the-art competitors.
arXiv Detail & Related papers (2024-06-02T15:35:45Z) - Corpus Considerations for Annotator Modeling and Scaling [9.263562546969695]
We show that the commonly used user token model consistently outperforms more complex models.
Our findings shed light on the relationship between corpus statistics and annotator modeling performance.
arXiv Detail & Related papers (2024-04-02T22:27:24Z) - Out-of-Distribution Detection via Deep Multi-Comprehension Ensemble [11.542472900306745]
Multi-Comprehension (MC) Ensemble is proposed as a strategy to augment the Out-of-Distribution (OOD) feature representation field.
Our experimental results demonstrate the superior performance of the MC Ensemble strategy in OOD detection.
This underscores the effectiveness of our proposed approach in enhancing the model's capability to detect instances outside its training distribution.
arXiv Detail & Related papers (2024-03-24T18:43:04Z) - Investigating Ensemble Methods for Model Robustness Improvement of Text
Classifiers [66.36045164286854]
We analyze a set of existing bias features and demonstrate there is no single model that works best for all the cases.
By choosing an appropriate bias model, we can obtain a better robustness result than baselines with a more sophisticated model design.
arXiv Detail & Related papers (2022-10-28T17:52:10Z) - Combining Diverse Feature Priors [90.74601233745047]
We show that models trained with diverse sets of feature priors have less overlapping failure modes.
We also demonstrate that jointly training such models on additional (unlabeled) data allows them to correct each other's mistakes.
arXiv Detail & Related papers (2021-10-15T17:31:10Z) - Modeling High-order Interactions across Multi-interests for Micro-video
Reommendation [65.16624625748068]
We propose a Self-over-Co Attention module to enhance user's interest representation.
In particular, we first use co-attention to model correlation patterns across different levels and then use self-attention to model correlation patterns within a specific level.
arXiv Detail & Related papers (2021-04-01T07:20:15Z) - Characterizing Fairness Over the Set of Good Models Under Selective
Labels [69.64662540443162]
We develop a framework for characterizing predictive fairness properties over the set of models that deliver similar overall performance.
We provide tractable algorithms to compute the range of attainable group-level predictive disparities.
We extend our framework to address the empirically relevant challenge of selectively labelled data.
arXiv Detail & Related papers (2021-01-02T02:11:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.