Balancing Accuracy and Efficiency in Multi-Turn Intent Classification for LLM-Powered Dialog Systems in Production
- URL: http://arxiv.org/abs/2411.12307v1
- Date: Tue, 19 Nov 2024 07:48:35 GMT
- Title: Balancing Accuracy and Efficiency in Multi-Turn Intent Classification for LLM-Powered Dialog Systems in Production
- Authors: Junhua Liu, Yong Keat Tan, Bin Fu, Kwan Hui Lim,
- Abstract summary: This paper presents two novel approaches to enhance scalability and reduce latency in production dialogue systems.
First, we introduce Symbol Tuning, which simplifies intent labels to reduce task complexity and improve performance in multi-turn dialogues.
Second, we propose C-LARA, a framework that employs LLMs for data augmentation and pseudo-labeling to generate synthetic multi-turn dialogues.
- Score: 6.459396785817196
- License:
- Abstract: Accurate multi-turn intent classification is essential for advancing conversational AI systems. However, challenges such as the scarcity of comprehensive datasets and the complexity of contextual dependencies across dialogue turns hinder progress. This paper presents two novel approaches leveraging Large Language Models (LLMs) to enhance scalability and reduce latency in production dialogue systems. First, we introduce Symbol Tuning, which simplifies intent labels to reduce task complexity and improve performance in multi-turn dialogues. Second, we propose C-LARA (Consistency-aware, Linguistics Adaptive Retrieval Augmentation), a framework that employs LLMs for data augmentation and pseudo-labeling to generate synthetic multi-turn dialogues. These enriched datasets are used to fine-tune a small, efficient model suitable for deployment. Experiments conducted on multilingual dialogue datasets demonstrate significant improvements in classification accuracy and resource efficiency. Our methods enhance multi-turn intent classification accuracy by 5.09%, reduce annotation costs by 40%, and enable scalable deployment in low-resource multilingual industrial systems, highlighting their practicality and impact.
Related papers
- Intent-Aware Dialogue Generation and Multi-Task Contrastive Learning for Multi-Turn Intent Classification [6.459396785817196]
Chain-of-Intent generates intent-driven conversations through self-play.
MINT-CL is a framework for multi-turn intent classification using multi-task contrastive learning.
We release MINT-E, a multilingual, intent-aware multi-turn e-commerce dialogue corpus.
arXiv Detail & Related papers (2024-11-21T15:59:29Z) - RA-BLIP: Multimodal Adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training [55.54020926284334]
Multimodal Large Language Models (MLLMs) have recently received substantial interest, which shows their emerging potential as general-purpose models for various vision-language tasks.
Retrieval augmentation techniques have proven to be effective plugins for both LLMs and MLLMs.
In this study, we propose multimodal adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training (RA-BLIP), a novel retrieval-augmented framework for various MLLMs.
arXiv Detail & Related papers (2024-10-18T03:45:19Z) - Unlocking the Potential of Model Merging for Low-Resource Languages [66.7716891808697]
Adapting large language models to new languages typically involves continual pre-training (CT) followed by supervised fine-tuning (SFT)
We propose model merging as an alternative for low-resource languages, combining models with distinct capabilities into a single model without additional training.
Experiments based on Llama-2-7B demonstrate that model merging effectively endows LLMs for low-resource languages with task-solving abilities, outperforming CT-then-SFT in scenarios with extremely scarce data.
arXiv Detail & Related papers (2024-07-04T15:14:17Z) - LARA: Linguistic-Adaptive Retrieval-Augmentation for Multi-Turn Intent Classification [6.459396785817196]
LARA is a Linguistic-Adaptive Retrieval-Augmentation framework to enhance accuracy in multi-turn classification tasks across six languages.
Our experiments demonstrate that LARA achieves state-of-the-art performance on multi-turn intent classification tasks.
arXiv Detail & Related papers (2024-03-25T07:38:40Z) - DIALIGHT: Lightweight Multilingual Development and Evaluation of
Task-Oriented Dialogue Systems with Large Language Models [76.79929883963275]
DIALIGHT is a toolkit for developing and evaluating multilingual Task-Oriented Dialogue (ToD) systems.
It features a secure, user-friendly web interface for fine-grained human evaluation at both local utterance level and global dialogue level.
Our evaluations reveal that while PLM fine-tuning leads to higher accuracy and coherence, LLM-based systems excel in producing diverse and likeable responses.
arXiv Detail & Related papers (2024-01-04T11:27:48Z) - LaDA: Latent Dialogue Action For Zero-shot Cross-lingual Neural Network
Language Modeling [20.002861239367704]
Cross-lingual adaptation has proven effective in spoken language understanding systems with limited resources.
Existing methods are frequently unsatisfactory for intent detection and slot filling.
Latent Dialogue Action layer is proposed to optimize decoding strategy.
arXiv Detail & Related papers (2023-08-05T15:51:45Z) - OverPrompt: Enhancing ChatGPT through Efficient In-Context Learning [49.38867353135258]
We propose OverPrompt, leveraging the in-context learning capability of LLMs to handle multiple task inputs.
Our experiments show that OverPrompt can achieve cost-efficient zero-shot classification without causing significant detriment to task performance.
arXiv Detail & Related papers (2023-05-24T10:08:04Z) - Quick Starting Dialog Systems with Paraphrase Generation [0.0]
We propose a method to reduce the cost and effort of creating new conversational agents by artificially generating more data from existing examples.
Our proposed approach can kick-start a dialog system with little human effort, and brings its performance to a level satisfactory enough for allowing actual interactions with real end-users.
arXiv Detail & Related papers (2022-04-06T02:35:59Z) - Cross-Lingual Dialogue Dataset Creation via Outline-Based Generation [70.81596088969378]
Cross-lingual Outline-based Dialogue dataset (termed COD) enables natural language understanding.
COD enables dialogue state tracking, and end-to-end dialogue modelling and evaluation in 4 diverse languages.
arXiv Detail & Related papers (2022-01-31T18:11:21Z) - Improving Classifier Training Efficiency for Automatic Cyberbullying
Detection with Feature Density [58.64907136562178]
We study the effectiveness of Feature Density (FD) using different linguistically-backed feature preprocessing methods.
We hypothesise that estimating dataset complexity allows for the reduction of the number of required experiments.
The difference in linguistic complexity of datasets allows us to additionally discuss the efficacy of linguistically-backed word preprocessing.
arXiv Detail & Related papers (2021-11-02T15:48:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.