論文の概要: Accelerating UMAP for Large-Scale Datasets Through Spectral Coarsening
- arxiv url: http://arxiv.org/abs/2411.12331v1
- Date: Tue, 19 Nov 2024 08:32:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-20 13:36:36.674606
- Title: Accelerating UMAP for Large-Scale Datasets Through Spectral Coarsening
- Title(参考訳): スペクトル粗化による大規模データセットのUDP高速化
- Authors: Yongyu Wang,
- Abstract要約: 提案手法は,本質的な多様体構造を保ちながら,データセットのサイズを大幅に削減する。
USPSのような実世界のデータセットの実験では、埋め込み忠実さを損なうことなく、実質的なデータ削減を実現する方法の能力を実証している。
- 参考スコア(独自算出の注目度): 2.1937382384136637
- License:
- Abstract: This paper introduces an innovative approach to dramatically accelerate UMAP using spectral data compression.The proposed method significantly reduces the size of the dataset, preserving its essential manifold structure through an advanced spectral compression technique. This allows UMAP to perform much faster while maintaining the quality of its embeddings. Experiments on real-world datasets, such as USPS, demonstrate the method's ability to achieve substantial data reduction without compromising embedding fidelity.
- Abstract(参考訳): 本稿では, スペクトルデータ圧縮を用いてUMAPを劇的に高速化する革新的な手法を導入し, 提案手法は, 高度なスペクトル圧縮技術により, 基本多様体構造を保ちながら, データセットのサイズを大幅に削減する。
これにより、UMAPはその埋め込みの品質を維持しながら、はるかに高速なパフォーマンスを実現することができる。
USPSのような実世界のデータセットの実験では、埋め込み忠実さを損なうことなく、実質的なデータ削減を実現する方法の能力を実証している。
関連論文リスト
- ODDN: Addressing Unpaired Data Challenges in Open-World Deepfake Detection on Online Social Networks [51.03118447290247]
オープンワールドデータアグリゲーション(ODA)と圧縮・ディスカード勾配補正(CGC)を組み合わせたオープンワールドディープフェイク検出ネットワーク(ODDN)を提案する。
細粒度分析と粗粒度分析の両方により,ODAは圧縮試料と原試料の相関関係を効果的に集約する。
CGCは、オンラインソーシャルネットワーク(OSN)における多種多様な圧縮方法のパフォーマンス向上のために、圧縮・ディスカード勾配補正を組み込んだ。
論文 参考訳(メタデータ) (2024-10-24T12:32:22Z) - Anti-Collapse Loss for Deep Metric Learning Based on Coding Rate Metric [99.19559537966538]
DMLは、分類、クラスタリング、検索といった下流タスクのための識別可能な高次元埋め込み空間を学習することを目的としている。
埋め込み空間の構造を維持し,特徴の崩壊を避けるために,反崩壊損失と呼ばれる新しい損失関数を提案する。
ベンチマークデータセットの総合実験により,提案手法が既存の最先端手法より優れていることを示す。
論文 参考訳(メタデータ) (2024-07-03T13:44:20Z) - Hierarchical Features Matter: A Deep Exploration of GAN Priors for Improved Dataset Distillation [51.44054828384487]
階層的生成潜在蒸留(H-GLaD)と呼ばれる新しいパラメータ化法を提案する。
本手法はGAN内の階層層を系統的に探索する。
さらに,合成データセット評価に伴う計算負担を軽減するために,新しいクラス関連特徴距離尺度を導入する。
論文 参考訳(メタデータ) (2024-06-09T09:15:54Z) - Sparse $L^1$-Autoencoders for Scientific Data Compression [0.0]
L1$-regularizedの高次元ラテント空間を用いたオートエンコーダの開発により,効率的なデータ圧縮手法を提案する。
本稿では,これらの情報に富む潜伏空間を用いて,ぼやけなどのアーティファクトを緩和し,科学的データに対する高効率なデータ圧縮手法を実現する方法について述べる。
論文 参考訳(メタデータ) (2024-05-23T07:48:00Z) - GWLZ: A Group-wise Learning-based Lossy Compression Framework for Scientific Data [14.92764869276237]
本稿では,GWLZを提案する。GWLZは,複数の軽量学習可能エンハンサモデルを備えたグループ学習型損失圧縮フレームワークである。
本稿では,GWLZが圧縮効率に悪影響を及ぼすことなく,圧縮されたデータ再構成品質を著しく向上させることを示す。
論文 参考訳(メタデータ) (2024-04-20T21:12:53Z) - Convolutional variational autoencoders for secure lossy image compression in remote sensing [47.75904906342974]
本研究では,畳み込み変分オートエンコーダ(CVAE)に基づく画像圧縮について検討する。
CVAEは、JPEG2000のような従来の圧縮手法を圧縮ベンチマークデータセットのかなりのマージンで上回ることが示されている。
論文 参考訳(メタデータ) (2024-04-03T15:17:29Z) - Accelerate Support Vector Clustering via Spectrum-Preserving Data
Compression [5.825190876052149]
提案手法は,まず圧縮されたデータセットを圧縮し,元のデータセットの鍵クラスタ特性を保ちながら計算する。
スペクトル圧縮されたデータセットは、ベクトルクラスタリングをサポートする高速で高品質なアルゴリズムの開発に活用される。
論文 参考訳(メタデータ) (2023-04-19T01:35:05Z) - CAFE: Learning to Condense Dataset by Aligning Features [72.99394941348757]
本稿ではCAFE(Aligning features)によるCondenseデータセットの新しいスキームを提案する。
このアプローチの核心は、さまざまなスケールにわたる実データと合成データから機能を整合させる効果的な戦略です。
提案したCAFEを様々なデータセットで検証し,概ね最先端技術であることを示す。
論文 参考訳(メタデータ) (2022-03-03T05:58:49Z) - Efficient Data Compression for 3D Sparse TPC via Bicephalous
Convolutional Autoencoder [8.759778406741276]
この研究は、textitBicephalous Convolutional AutoEncoder (BCAE)と呼ばれる、空間と回帰を同時に解決するデュアルヘッドオートエンコーダを導入している。
これはMGARD、SZ、ZFPといった従来のデータ圧縮手法と比較して圧縮忠実度と比の両方の利点を示している。
論文 参考訳(メタデータ) (2021-11-09T21:26:37Z) - Light Field Reconstruction Using Convolutional Network on EPI and
Extended Applications [78.63280020581662]
スパースビューからの光場再構成のための新しい畳み込みニューラルネットワーク(CNN)ベースのフレームワークを開発した。
最先端のアルゴリズムと比較して,提案フレームワークの高性能と堅牢性を実証する。
論文 参考訳(メタデータ) (2021-03-24T08:16:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。