論文の概要: Automatic staff reconstruction within SIMSSA proect
- arxiv url: http://arxiv.org/abs/2411.12383v1
- Date: Tue, 19 Nov 2024 10:09:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-20 13:35:55.013373
- Title: Automatic staff reconstruction within SIMSSA proect
- Title(参考訳): SIMSSAプロジェクト内におけるスタッフの自動再建
- Authors: Lorenzo J. Tardon, Isabel Barbancho, Ana M. Barbancho, Ichiro Fujinaga,
- Abstract要約: 本稿では,従来の音楽オブジェクト識別システムの出力を後処理する手法について述べる。
デジタルサルジンネスデータベース(英語版)から古代のスコアのスタッフラインの検出、追跡、調査による復元を可能にする。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: The automatic analysis of scores has been a research topic of interest for the last few decades and still is since music databases that include musical scores are currently being created to make musical content available to the public, including scores of ancient music. For the correct analysis of music elements and their interpretation, the identification of staff lines is of key importance. In this paper, a scheme to post-process the output of a previous musical object identification system is described. This system allows the reconstruction by means of detection, tracking and interpolation of the staff lines of ancient scores from the digital Salzinnes Database. The scheme developed shows a remarkable performance on the specific task it was created for.
- Abstract(参考訳): 楽譜の自動分析はここ数十年の研究課題であり、古代音楽の楽譜を含む音楽コンテンツを一般に公開するための音楽データベースが現在作成されているためである。
音楽要素の正確な分析と解釈のためには,スタッフラインの同定が重要である。
本稿では,従来の音楽オブジェクト識別システムの出力を後処理する手法について述べる。
このシステムは、デジタルサルジンネスデータベースから古代のスコアのスタッフラインの検出、追跡、補間による再構築を可能にする。
開発されたスキームは、それのために作られた特定のタスクで顕著なパフォーマンスを示している。
関連論文リスト
- Toward a More Complete OMR Solution [49.74172035862698]
光音楽認識は、音楽の表記をデジタル形式に変換することを目的としている。
OMRに取り組む1つのアプローチは、画像内の視覚音楽の表記要素を最初に検出するマルチステージパイプラインである。
YOLOv8に基づく音楽オブジェクト検出器を導入し,検出性能を向上する。
第2に、検出出力に基づいて記法組立段階を完了する教師付きトレーニングパイプラインを導入する。
論文 参考訳(メタデータ) (2024-08-31T01:09:12Z) - Optical Music Recognition in Manuscripts from the Ricordi Archive [6.274767633959002]
リコルディのアーカイブは、ドニゼッティ、ヴェルディ、プッチーニといった著名なオペラ作曲家の著名な音楽写本のコレクションであり、デジタル化されている。
我々は,ノート,ステーブ,クリーフ,消去,作曲家の注釈など,写本に描かれた様々な音楽要素を表すサンプルを自動的に抽出した。
我々は、識別された音楽要素を区別するために、複数のニューラルネットワークベースの分類器を訓練した。
論文 参考訳(メタデータ) (2024-08-14T09:29:11Z) - Quantifying the Corpus Bias Problem in Automatic Music Transcription Systems [3.5570874721859016]
AMT(Automatic Music Transcription)は、音楽の音声録音における音符認識のタスクである。
我々は、音楽と音の2つの主要な分布シフト源を同定する。
2つの新しい実験セットにおいて,複数のSotA AMTシステムの性能評価を行った。
論文 参考訳(メタデータ) (2024-08-08T19:40:28Z) - A Dataset for Greek Traditional and Folk Music: Lyra [69.07390994897443]
本稿では,80時間程度で要約された1570曲を含むギリシャの伝統音楽と民俗音楽のデータセットについて述べる。
このデータセットにはYouTubeのタイムスタンプ付きリンクが組み込まれており、オーディオやビデオの検索や、インスツルメンテーション、地理、ジャンルに関する豊富なメタデータ情報が含まれている。
論文 参考訳(メタデータ) (2022-11-21T14:15:43Z) - MeloForm: Generating Melody with Musical Form based on Expert Systems
and Neural Networks [146.59245563763065]
MeloFormは、エキスパートシステムとニューラルネットワークを使用して、音楽形式でメロディを生成するシステムである。
詩やコーラス形式、ロンド形式、変奏形式、ソナタ形式など、様々な形式をサポートすることができる。
論文 参考訳(メタデータ) (2022-08-30T15:44:15Z) - Score Transformer: Generating Musical Score from Note-level
Representation [2.3554584457413483]
音符レベルの表現を適切な音楽表記に変換するためにトランスフォーマーモデルを訓練する。
また、モデルを扱うための効果的な表記レベルトークン表現についても検討する。
論文 参考訳(メタデータ) (2021-12-01T09:08:01Z) - Sequence Generation using Deep Recurrent Networks and Embeddings: A
study case in music [69.2737664640826]
本稿では,異なる種類の記憶機構(メモリセル)について評価し,音楽合成分野におけるその性能について検討する。
提案したアーキテクチャの性能を自動評価するために,定量的な測定値のセットが提示される。
論文 参考訳(メタデータ) (2020-12-02T14:19:19Z) - A Comprehensive Survey on Deep Music Generation: Multi-level
Representations, Algorithms, Evaluations, and Future Directions [10.179835761549471]
本稿では,深層学習を用いた音楽生成レベルの違いによる様々な作曲課題の概要について述べる。
さらに,多様なタスクに適したデータセットを要約し,音楽表現,評価方法,および異なるレベルの課題について考察し,最後にいくつかの今後の方向性を指摘する。
論文 参考訳(メタデータ) (2020-11-13T08:01:20Z) - Melody-Conditioned Lyrics Generation with SeqGANs [81.2302502902865]
本稿では,SeqGAN(Sequence Generative Adversarial Networks)に基づく,エンドツーエンドのメロディ条件付き歌詞生成システムを提案する。
入力条件が評価指標に悪影響を及ぼすことなく,ネットワークがより有意義な結果が得られることを示す。
論文 参考訳(メタデータ) (2020-10-28T02:35:40Z) - Multi-Modal Music Information Retrieval: Augmenting Audio-Analysis with
Visual Computing for Improved Music Video Analysis [91.3755431537592]
この論文は、音声分析とコンピュータビジョンを組み合わせて、マルチモーダルの観点から音楽情報検索(MIR)タスクにアプローチする。
本研究の主な仮説は、ジャンルやテーマなど特定の表現的カテゴリーを視覚的内容のみに基づいて認識できるという観察に基づいている。
実験は、3つのMIRタスクに対して行われ、アーティスト識別、音楽ジェネア分類、クロスジェネア分類を行う。
論文 参考訳(メタデータ) (2020-02-01T17:57:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。