論文の概要: Enhancing Reasoning Capabilities of LLMs via Principled Synthetic Logic Corpus
- arxiv url: http://arxiv.org/abs/2411.12498v1
- Date: Tue, 19 Nov 2024 13:31:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-20 13:37:21.557365
- Title: Enhancing Reasoning Capabilities of LLMs via Principled Synthetic Logic Corpus
- Title(参考訳): 原理的合成論理コーパスによるLCMの共振性能向上
- Authors: Terufumi Morishita, Gaku Morio, Atsuki Yamaguchi, Yasuhiro Sogawa,
- Abstract要約: 大規模言語モデル(LLM)は幅広いタスクを解くことができるが、推論に苦戦している。
本稿では,プログラム生成論理推論サンプルを用いてLLMの推論能力を高めることを目的として,$textbfAdditional Logic Training (ALT)$を提案する。
- 参考スコア(独自算出の注目度): 13.276829763453433
- License:
- Abstract: Large language models (LLMs) are capable of solving a wide range of tasks, yet they have struggled with reasoning. To address this, we propose $\textbf{Additional Logic Training (ALT)}$, which aims to enhance LLMs' reasoning capabilities by program-generated logical reasoning samples. We first establish principles for designing high-quality samples by integrating symbolic logic theory and previous empirical insights. Then, based on these principles, we construct a synthetic corpus named $\textbf{Formal Logic Deduction Diverse}$ ($\textbf{FLD}$$^{\times 2}$), comprising numerous samples of multi-step deduction with unknown facts, diverse reasoning rules, diverse linguistic expressions, and challenging distractors. Finally, we empirically show that ALT on FLD$^{\times2}$ substantially enhances the reasoning capabilities of state-of-the-art LLMs, including LLaMA-3.1-70B. Improvements include gains of up to 30 points on logical reasoning benchmarks, up to 10 points on math and coding benchmarks, and 5 points on the benchmark suite BBH.
- Abstract(参考訳): 大規模言語モデル(LLM)は幅広いタスクを解くことができるが、推論に苦戦している。
これを解決するために、プログラム生成論理推論サンプルによるLCMの推論能力の向上を目的とした$\textbf{Additional Logic Training (ALT)}$を提案する。
まず、記号論理理論と過去の経験的洞察を統合することによって、高品質なサンプルを設計するための原則を確立する。
そして、これらの原理に基づいて、未知の事実、多様な推論規則、多様な言語表現、難解な散文を含む多段階推論のサンプルからなる合成コーパス$\textbf{Formal Logic Deduction Diverse}$$$$\textbf{FLD}$$$^{\times 2}$を構築した。
最後に、ALT on FLD$^{\times2}$は、LLaMA-3.1-70Bを含む最先端LLMの推論能力を大幅に向上させることを示す。
改善点としては、論理的推論ベンチマークで最大30ポイント、数学とコーディングベンチマークで最大10ポイント、ベンチマークスイートのBBHで最大5ポイントが挙げられている。
関連論文リスト
- P-FOLIO: Evaluating and Improving Logical Reasoning with Abundant Human-Written Reasoning Chains [97.25943550933829]
P-FOLIO(P-FOLIO)は、多種多様で複雑な推論連鎖からなる人称注釈付きデータセットである。
我々はP-FOLIOを用いて大規模言語モデル推論機能の評価と改善を行う。
論文 参考訳(メタデータ) (2024-10-11T19:22:57Z) - Multi-LogiEval: Towards Evaluating Multi-Step Logical Reasoning Ability of Large Language Models [46.26140720993383]
Multi-LogiEvalは、様々な推論規則と深さを持つ多段階論理推論を含む総合的な評価データセットである。
GPT-4, ChatGPT, Gemini-Pro, Yi, Orca, Mistralなどの大規模言語モデルの評価を行った。
論文 参考訳(メタデータ) (2024-06-24T23:02:56Z) - LogicBench: Towards Systematic Evaluation of Logical Reasoning Ability of Large Language Models [52.03659714625452]
最近開発された大規模言語モデル (LLM) は、幅広い言語理解タスクにおいて非常によく機能することが示されている。
しかし、それらは自然言語に対して本当に「理性」があるのだろうか?
この疑問は研究の注目を集めており、コモンセンス、数値、定性的など多くの推論技術が研究されている。
論文 参考訳(メタデータ) (2024-04-23T21:08:49Z) - Can LLMs Reason with Rules? Logic Scaffolding for Stress-Testing and Improving LLMs [87.34281749422756]
大規模言語モデル(LLM)は、様々な推論タスクにおいて、印象的な人間的なパフォーマンスを実現している。
しかし、その根底にある推論規則の熟達性は、人間の能力に欠ける。
本稿では,推論ルールベースであるULogicを構築するための,推論ルール生成フレームワークを提案する。
論文 参考訳(メタデータ) (2024-02-18T03:38:51Z) - LogicAsker: Evaluating and Improving the Logical Reasoning Ability of Large Language Models [63.14196038655506]
大規模言語モデル(LLM)の論理的推論能力を評価・拡張するための新しいアプローチであるLogicAskerを紹介する。
提案手法は, LLMが論理規則を学習する際の大きなギャップを明らかにし, 異なるモデル間で29%から90%の推論失敗を識別する。
GPT-4oのようなモデルにおける論理的推論を最大5%向上させることで、これらの知見を活用して、ターゲットとなる実演例と微調整データを構築した。
論文 参考訳(メタデータ) (2024-01-01T13:53:53Z) - Towards LogiGLUE: A Brief Survey and A Benchmark for Analyzing Logical Reasoning Capabilities of Language Models [56.34029644009297]
大規模言語モデル(LLM)は、形式的知識表現(KR)システムの様々な制限を克服する能力を示した。
LLMは誘導的推論において最も優れているが、誘導的推論では最も効果が低い。
モデルの性能を評価するため,シングルタスクトレーニング,マルチタスクトレーニング,および「チェーンオブ思考」知識蒸留細調整技術について検討した。
論文 参考訳(メタデータ) (2023-10-02T01:00:50Z) - Learning Deductive Reasoning from Synthetic Corpus based on Formal Logic [14.503982715625902]
本研究では,言語モデル(LM)に対する合成コーパスに基づくアプローチについて検討し,論理的帰納的推論能力を得る。
形式論理理論に基づく推論規則は,多段階的に組み合わせることで,他の推論規則を導出することができる。
我々は、FLDコーパスで訓練されたLMがより一般化可能な推論能力を取得することを実証的に検証した。
論文 参考訳(メタデータ) (2023-08-11T13:15:35Z) - Exploring Self-supervised Logic-enhanced Training for Large Language Models [59.227222647741094]
本稿では,自己指導型ポストトレーニングによる論理的知識の活用の可能性について検討する。
我々はMERItの自己回帰的目的変数を考案し、パラメータサイズが30億から13億の2つのLLM系列、すなわちFLAN-T5とLLaMAと統合する。
2つの挑戦的な論理的推論ベンチマークの結果は、LogicLLMの有効性を示している。
論文 参考訳(メタデータ) (2023-05-23T06:13:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。