論文の概要: Stream-Based Active Learning for Process Monitoring
- arxiv url: http://arxiv.org/abs/2411.12563v1
- Date: Tue, 19 Nov 2024 15:27:54 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-20 13:38:09.305353
- Title: Stream-Based Active Learning for Process Monitoring
- Title(参考訳): プロセスモニタリングのためのストリームベースアクティブラーニング
- Authors: Christian Capezza, Antonio Lepore, Kamran Paynabar,
- Abstract要約: 本稿では,統計的プロセスモニタリング(SPM)のためのストリームベースの新しいアクティブラーニング戦略を提案する。
最終的な目標は、限られた予算で制約されたリソースのラベル付けを最適化し、可能なOC状態を動的に更新することである。
- 参考スコア(独自算出の注目度): 1.2221087476416055
- License:
- Abstract: Statistical process monitoring (SPM) methods are essential tools in quality management to check the stability of industrial processes, i.e., to dynamically classify the process state as in control (IC), under normal operating conditions, or out of control (OC), otherwise. Traditional SPM methods are based on unsupervised approaches, which are popular because in most industrial applications the true OC states of the process are not explicitly known. This hampered the development of supervised methods that could instead take advantage of process data containing labels on the true process state, although they still need improvement in dealing with class imbalance, as OC states are rare in high-quality processes, and the dynamic recognition of unseen classes, e.g., the number of possible OC states. This article presents a novel stream-based active learning strategy for SPM that enhances partially hidden Markov models to deal with data streams. The ultimate goal is to optimize labeling resources constrained by a limited budget and dynamically update the possible OC states. The proposed method performance in classifying the true state of the process is assessed through a simulation and a case study on the SPM of a resistance spot welding process in the automotive industry, which motivated this research.
- Abstract(参考訳): 統計プロセスモニタリング(SPM)法は、産業プロセスの安定性、すなわち、正常な運転条件下でのプロセス状態を制御(IC)として動的に分類する、あるいは制御不能(OC)として品質管理に不可欠なツールである。
従来のSPM法は教師なしの手法に基づいており、ほとんどの産業アプリケーションでは、プロセスの真のOC状態が明確には分かっていないため人気がある。
これにより、真のプロセス状態にラベルを含むプロセスデータを活用できるような教師付き手法の開発が妨げられたが、OC状態は高品質なプロセスでは珍しいため、クラス不均衡に対処する上で改善が必要である。
本稿では、データストリームを扱うために部分的に隠れマルコフモデルを強化するSPMの新しいストリームベースのアクティブラーニング戦略を示す。
最終的な目標は、限られた予算で制約されたリソースのラベル付けを最適化し、可能なOC状態を動的に更新することである。
本研究の動機となったのは, 自動車業界における抵抗スポット溶接プロセスのSPMに関するシミュレーションとケーススタディである。
関連論文リスト
- Step-by-Step Reasoning for Math Problems via Twisted Sequential Monte Carlo [55.452453947359736]
Twisted Sequential Monte Carlo(TSMC)に基づく新しい検証手法を提案する。
TSMCを大規模言語モデルに適用し、部分解に対する将来的な報酬を推定する。
このアプローチは、ステップワイドなヒューマンアノテーションを必要としない、より直接的なトレーニングターゲットをもたらす。
論文 参考訳(メタデータ) (2024-10-02T18:17:54Z) - AgentSimulator: An Agent-based Approach for Data-driven Business Process Simulation [6.590869939300887]
ビジネスプロセスシミュレーション(Business Process Simulation, BPS)は、プロセスのパフォーマンスを様々なシナリオで推定するための汎用的な手法である。
本稿では,イベントログからマルチエージェントシステムを検出するリソースファーストなBPS手法であるAgentSimulatorを紹介する。
実験の結果,AgentSimulatorは従来の手法よりもはるかに少ない時間で計算精度を向上できることがわかった。
論文 参考訳(メタデータ) (2024-08-16T07:19:11Z) - Data-driven Bayesian State Estimation with Compressed Measurement of Model-free Process using Semi-supervised Learning [57.04370580292727]
モデルフリープロセスの圧縮測定(BSCM)によるデータ駆動ベイズ状態の推定。
時間的測定ベクトルの次元は、推定される時間的状態ベクトルの次元よりも低い。
既存の2つの教師なし学習ベースのデータ駆動手法は、モデルフリープロセスのBSCM問題に対処できない。
半教師付き学習に基づくDANSE手法を開発し,その手法をSemiDANSEと呼ぶ。
論文 参考訳(メタデータ) (2024-07-10T05:03:48Z) - STAT: Towards Generalizable Temporal Action Localization [56.634561073746056]
WTAL(Wakly-supervised temporal action Localization)は、ビデオレベルのラベルだけでアクションインスタンスを認識およびローカライズすることを目的としている。
既存の手法は、異なる分布に転送する際の重大な性能劣化に悩まされる。
本稿では,アクションローカライズ手法の一般化性向上に焦点を当てたGTALを提案する。
論文 参考訳(メタデータ) (2024-04-20T07:56:21Z) - Online Modeling and Monitoring of Dependent Processes under Resource
Constraints [11.813520177037763]
提案手法は,限られた資源下での依存プロセスの活用と探索を最適に行うために,協調学習に基づくアッパー信頼境界(CL-UCB)アルゴリズムを設計する。
提案手法の有効性は, 理論解析, シミュレーション研究, およびアルツハイマー病における適応認知モニタリングの実証研究を通じて実証された。
論文 参考訳(メタデータ) (2023-07-26T14:14:38Z) - Generating Hidden Markov Models from Process Models Through Nonnegative Tensor Factorization [0.0]
我々は,理論的プロセスモデルと関連する最小隠れマルコフモデルを統合する,数学的に新しい手法を提案する。
提案手法は, (a) 理論的プロセスモデル, (b) HMM, (c) 結合非負行列テンソル因子分解, (d) カスタムモデル選択を集約する。
論文 参考訳(メタデータ) (2022-10-03T16:19:27Z) - Prescriptive Process Monitoring: Quo Vadis? [64.39761523935613]
本論文はシステム文献レビュー(SLR)を通して,本分野における既存手法について考察する。
SLRは今後の研究の課題や分野に関する洞察を提供し、規範的なプロセス監視手法の有用性と適用性を高めることができる。
論文 参考訳(メタデータ) (2021-12-03T08:06:24Z) - Uncertainty Weighted Actor-Critic for Offline Reinforcement Learning [63.53407136812255]
オフライン強化学習は、探索を必要とせずに、事前に収集された静的データセットから効果的なポリシーを学ぶことを約束する。
既存のQラーニングとアクター批判に基づくオフポリティクスRLアルゴリズムは、アウト・オブ・ディストリビューション(OOD)アクションや状態からのブートストラップ時に失敗する。
我々は,OOD状態-動作ペアを検出し,トレーニング目標への貢献度を下げるアルゴリズムであるUncertainty Weighted Actor-Critic (UWAC)を提案する。
論文 参考訳(メタデータ) (2021-05-17T20:16:46Z) - CoCoMoT: Conformance Checking of Multi-Perspective Processes via SMT
(Extended Version) [62.96267257163426]
我々はCoCoMoT(Computing Conformance Modulo Theories)フレームワークを紹介する。
まず、純粋な制御フロー設定で研究したSATベースのエンコーディングを、データ認識ケースに持ち上げる方法を示す。
次に,プロパティ保存型クラスタリングの概念に基づく新しい前処理手法を提案する。
論文 参考訳(メタデータ) (2021-03-18T20:22:50Z) - Overcoming Model Bias for Robust Offline Deep Reinforcement Learning [3.1325640909772403]
MOOSEは、ポリシーをデータのサポート内に保持することで、低モデルバイアスを保証するアルゴリズムである。
我々はMOOSEと産業ベンチマークのBRAC, BEAR, BCQ, および MuJoCo の連続制御タスクを比較した。
論文 参考訳(メタデータ) (2020-08-12T19:08:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。