STREAM: A Universal State-Space Model for Sparse Geometric Data
- URL: http://arxiv.org/abs/2411.12603v2
- Date: Fri, 22 Nov 2024 11:21:50 GMT
- Title: STREAM: A Universal State-Space Model for Sparse Geometric Data
- Authors: Mark Schöne, Yash Bhisikar, Karan Bania, Khaleelulla Khan Nazeer, Christian Mayr, Anand Subramoney, David Kappel,
- Abstract summary: Handling unstructured geometric data, such as point clouds or event-based vision, is a pressing challenge in the field of machine vision.
We propose to encode geometric structure explicitly into the parameterization of a state-space model.
Our model deploys the Mamba selective state-space model with a modified kernel to efficiently map sparse data to modern hardware.
- Score: 2.9483719973596303
- License:
- Abstract: Handling sparse and unstructured geometric data, such as point clouds or event-based vision, is a pressing challenge in the field of machine vision. Recently, sequence models such as Transformers and state-space models entered the domain of geometric data. These methods require specialized preprocessing to create a sequential view of a set of points. Furthermore, prior works involving sequence models iterate geometric data with either uniform or learned step sizes, implicitly relying on the model to infer the underlying geometric structure. In this work, we propose to encode geometric structure explicitly into the parameterization of a state-space model. State-space models are based on linear dynamics governed by a one-dimensional variable such as time or a spatial coordinate. We exploit this dynamic variable to inject relative differences of coordinates into the step size of the state-space model. The resulting geometric operation computes interactions between all pairs of N points in O(N) steps. Our model deploys the Mamba selective state-space model with a modified CUDA kernel to efficiently map sparse geometric data to modern hardware. The resulting sequence model, which we call STREAM, achieves competitive results on a range of benchmarks from point-cloud classification to event-based vision and audio classification. STREAM demonstrates a powerful inductive bias for sparse geometric data by improving the PointMamba baseline when trained from scratch on the ModelNet40 and ScanObjectNN point cloud analysis datasets. It further achieves, for the first time, 100% test accuracy on all 11 classes of the DVS128 Gestures dataset.
Related papers
- Segmenting objects with Bayesian fusion of active contour models and convnet priors [0.729597981661727]
We propose a novel instance segmentation method geared towards Natural Resource Monitoring (NRM) imagery.
We formulate the problem as Bayesian maximum a posteriori inference which, in learning the individual object contours, incorporates shape, location, and position priors.
In experiments, we tackle the challenging, real-world problem of segmenting individual dead tree crowns and precise contours.
arXiv Detail & Related papers (2024-10-09T20:36:43Z) - PARSAC: Accelerating Robust Multi-Model Fitting with Parallel Sample
Consensus [26.366299016589256]
We present a real-time method for robust estimation of multiple instances of geometric models from noisy data.
A neural network segments the input data into clusters representing potential model instances.
We demonstrate state-of-the-art performance on these as well as multiple established datasets, with inference times as small as five milliseconds per image.
arXiv Detail & Related papers (2024-01-26T14:54:56Z) - Automatic Parameterization for Aerodynamic Shape Optimization via Deep
Geometric Learning [60.69217130006758]
We propose two deep learning models that fully automate shape parameterization for aerodynamic shape optimization.
Both models are optimized to parameterize via deep geometric learning to embed human prior knowledge into learned geometric patterns.
We perform shape optimization experiments on 2D airfoils and discuss the applicable scenarios for the two models.
arXiv Detail & Related papers (2023-05-03T13:45:40Z) - NeuroMorph: Unsupervised Shape Interpolation and Correspondence in One
Go [109.88509362837475]
We present NeuroMorph, a new neural network architecture that takes as input two 3D shapes.
NeuroMorph produces smooth and point-to-point correspondences between them.
It works well for a large variety of input shapes, including non-isometric pairs from different object categories.
arXiv Detail & Related papers (2021-06-17T12:25:44Z) - Manifold Topology Divergence: a Framework for Comparing Data Manifolds [109.0784952256104]
We develop a framework for comparing data manifold, aimed at the evaluation of deep generative models.
Based on the Cross-Barcode, we introduce the Manifold Topology Divergence score (MTop-Divergence)
We demonstrate that the MTop-Divergence accurately detects various degrees of mode-dropping, intra-mode collapse, mode invention, and image disturbance.
arXiv Detail & Related papers (2021-06-08T00:30:43Z) - Finding Geometric Models by Clustering in the Consensus Space [61.65661010039768]
We propose a new algorithm for finding an unknown number of geometric models, e.g., homographies.
We present a number of applications where the use of multiple geometric models improves accuracy.
These include pose estimation from multiple generalized homographies; trajectory estimation of fast-moving objects.
arXiv Detail & Related papers (2021-03-25T14:35:07Z) - Monocular 3D Detection with Geometric Constraints Embedding and
Semi-supervised Training [3.8073142980733]
We propose a novel framework for monocular 3D objects detection using only RGB images, called KM3D-Net.
We design a fully convolutional model to predict object keypoints, dimension, and orientation, and then combine these estimations with perspective geometry constraints to compute position attribute.
arXiv Detail & Related papers (2020-09-02T00:51:51Z) - Mix Dimension in Poincar\'{e} Geometry for 3D Skeleton-based Action
Recognition [57.98278794950759]
Graph Convolutional Networks (GCNs) have already demonstrated their powerful ability to model the irregular data.
We present a novel spatial-temporal GCN architecture which is defined via the Poincar'e geometry.
We evaluate our method on two current largest scale 3D datasets.
arXiv Detail & Related papers (2020-07-30T18:23:18Z) - LOCA: LOcal Conformal Autoencoder for standardized data coordinates [6.608924227377152]
We present a method for learning an embedding in $mathbbRd$ that is isometric to the latent variables of the manifold.
Our embedding is obtained using a LOcal Conformal Autoencoder (LOCA), an algorithm that constructs an embedding to rectify deformations.
We also apply LOCA to single-site Wi-Fi localization data, and to $3$-dimensional curved surface estimation.
arXiv Detail & Related papers (2020-04-15T17:49:37Z) - PUGeo-Net: A Geometry-centric Network for 3D Point Cloud Upsampling [103.09504572409449]
We propose a novel deep neural network based method, called PUGeo-Net, to generate uniform dense point clouds.
Thanks to its geometry-centric nature, PUGeo-Net works well for both CAD models with sharp features and scanned models with rich geometric details.
arXiv Detail & Related papers (2020-02-24T14:13:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.