論文の概要: CROW: Eliminating Backdoors from Large Language Models via Internal Consistency Regularization
- arxiv url: http://arxiv.org/abs/2411.12768v2
- Date: Wed, 11 Jun 2025 12:40:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-12 23:41:16.594273
- Title: CROW: Eliminating Backdoors from Large Language Models via Internal Consistency Regularization
- Title(参考訳): CROW:内部一貫性規則化による大規模言語モデルからのバックドアの排除
- Authors: Nay Myat Min, Long H. Pham, Yige Li, Jun Sun,
- Abstract要約: 大規模言語モデル(LLM)は、隠れたトリガーを介して出力を操作するバックドア攻撃に対して脆弱である。
本稿では,バックドアモデルがトリガ時に不安定な層単位の隠蔽表現を示すという観測を生かした内部一貫性規則化(CROW)を提案する。
CROWは、微調整やバックドアの中立化など、クリーンな参照モデルや知識のトリガを必要とせず、小さなクリーンなデータセットのみを使用して、レイヤ間の一貫性を強制する。
- 参考スコア(独自算出の注目度): 7.282200564983221
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) are vulnerable to backdoor attacks that manipulate outputs via hidden triggers. Existing defense methods--designed for vision/text classification tasks--fail for text generation. We propose Internal Consistency Regularization (CROW), a defense leveraging the observation that backdoored models exhibit unstable layer-wise hidden representations when triggered, while clean models show smooth transitions. CROW enforces consistency across layers via adversarial perturbations and regularization during finetuning, neutralizing backdoors without requiring clean reference models or trigger knowledge--only a small clean dataset. Experiments across Llama-2 (7B, 13B), CodeLlama (7B, 13B), and Mistral-7B demonstrate CROW's effectiveness: it achieves significant reductions in attack success rates across diverse backdoor strategies (sentiment steering, targeted refusal, code injection) while preserving generative performance. CROW's architecture-agnostic design enables practical deployment.
- Abstract(参考訳): 大規模言語モデル(LLM)は、隠れたトリガーを介して出力を操作するバックドア攻撃に対して脆弱である。
既存の防御手法 - 視覚/テキスト分類タスクのために設計された-- テキスト生成のための欠陥。
クリーンモデルがスムーズな遷移を示すのに対して、バックドアモデルがトリガ時に不安定な層単位の隠蔽表現を示すという観測を生かした内部一貫性規則化(CROW)を提案する。
CROWは、微調整やバックドアの中立化など、クリーンな参照モデルや知識のトリガを必要とせず、小さなクリーンなデータセットのみを使用して、レイヤ間の一貫性を強制する。
Llama-2 (7B, 13B), CodeLlama (7B, 13B), Mistral-7B にまたがる実験は CROW の有効性を示している。
CROWのアーキテクチャに依存しない設計は、実用的なデプロイを可能にする。
関連論文リスト
- REFINE: Inversion-Free Backdoor Defense via Model Reprogramming [60.554146386198376]
ディープニューラルネットワーク(DNN)に対するバックドア攻撃は、重大なセキュリティ脅威として浮上している。
モデル再プログラミングに基づく逆フリーバックドア防御手法であるREFINEを提案する。
論文 参考訳(メタデータ) (2025-02-22T07:29:12Z) - Neutralizing Backdoors through Information Conflicts for Large Language Models [20.6331157117675]
大規模言語モデル(LLM)からバックドアの挙動を除去する新しい手法を提案する。
軽量なデータセットを使用してコンフリクトモデルをトレーニングし、バックドアモデルとマージして悪意のある振る舞いを中和します。
我々は、90%以上のクリーンデータ精度を維持しながら、高度なバックドア攻撃の攻撃成功率を最大98%削減することができる。
論文 参考訳(メタデータ) (2024-11-27T12:15:22Z) - Towards Robust Object Detection: Identifying and Removing Backdoors via Module Inconsistency Analysis [5.8634235309501435]
オブジェクト検出モデルに適したバックドアディフェンスフレームワークを提案する。
不整合を定量化し解析することにより、バックドアを検出するアルゴリズムを開発する。
最先端の2段階物体検出器を用いた実験により, バックドア除去率の90%向上が得られた。
論文 参考訳(メタデータ) (2024-09-24T12:58:35Z) - CLIBE: Detecting Dynamic Backdoors in Transformer-based NLP Models [39.782217458240225]
本稿では, Transformer ベースの NLP モデルで動的バックドアを検出する最初のフレームワークである CLIBE を提案する。
私たちの知る限り、CLIBEは、入力テストサンプルをトリガーすることなく、テキスト生成モデルのバックドアを検出することができる最初のフレームワークです。
論文 参考訳(メタデータ) (2024-09-02T11:59:56Z) - DeCE: Deceptive Cross-Entropy Loss Designed for Defending Backdoor Attacks [26.24490960002264]
本稿では,コード言語モデルのセキュリティを高めるために,汎用的で効果的な損失関数DeCE(Deceptive Cross-Entropy)を提案する。
さまざまなコード合成データセット,モデル,有毒比による実験は,DeCEの適用性と有効性を示している。
論文 参考訳(メタデータ) (2024-07-12T03:18:38Z) - Revisiting Backdoor Attacks against Large Vision-Language Models [76.42014292255944]
本稿では,LVLMの命令チューニングにおけるバックドア攻撃の一般化可能性について実験的に検討する。
以上に基づいて,既存のバックドア攻撃を修正した。
本稿では,従来のシンプルなバックドア戦略でさえ,LVLMに深刻な脅威をもたらすことを指摘する。
論文 参考訳(メタデータ) (2024-06-27T02:31:03Z) - BEEAR: Embedding-based Adversarial Removal of Safety Backdoors in Instruction-tuned Language Models [57.5404308854535]
大型言語モデル(LLM)における安全バックドア攻撃は、正常な相互作用中の検出を回避しながら、安全でない振る舞いをステルス的に引き起こすことができる。
モデル埋め込み空間において,バックドアトリガーが比較的均一なドリフトを引き起こすという知見を活かした緩和手法であるBEEARを提案する。
両レベル最適化手法は、不要な振る舞いを誘発する普遍的な埋め込み摂動を特定し、モデルパラメータを調整し、これらの摂動に対する安全な振舞いを強化する。
論文 参考訳(メタデータ) (2024-06-24T19:29:47Z) - Lazy Layers to Make Fine-Tuned Diffusion Models More Traceable [70.77600345240867]
新たな任意の任意配置(AIAO)戦略は、微調整による除去に耐性を持たせる。
拡散モデルの入力/出力空間のバックドアを設計する既存の手法とは異なり,本手法では,サンプルサブパスの特徴空間にバックドアを埋め込む方法を提案する。
MS-COCO,AFHQ,LSUN,CUB-200,DreamBoothの各データセットに関する実証研究により,AIAOの堅牢性が確認された。
論文 参考訳(メタデータ) (2024-05-01T12:03:39Z) - BadCLIP: Dual-Embedding Guided Backdoor Attack on Multimodal Contrastive
Learning [85.2564206440109]
本報告では,防衛後においてもバックドア攻撃が有効であり続けるという現実的なシナリオにおける脅威を明らかにする。
バックドア検出や細調整防御のモデル化に抵抗性のあるemphtoolnsアタックを導入する。
論文 参考訳(メタデータ) (2023-11-20T02:21:49Z) - CleanCLIP: Mitigating Data Poisoning Attacks in Multimodal Contrastive
Learning [63.72975421109622]
CleanCLIPは、バックドア攻撃によって引き起こされる学習された刺激的関連を弱める微調整フレームワークである。
CleanCLIPは、マルチモーダル・コントラッシブ・ラーニングに対するバックドア・アタックを根絶しながら、良質な例によるモデル性能を維持している。
論文 参考訳(メタデータ) (2023-03-06T17:48:32Z) - Mitigating Backdoors in Federated Learning with FLD [7.908496863030483]
フェデレーション学習は、クライアントがプライバシー保護のために生データをアップロードすることなく、グローバルモデルを協調的にトレーニングすることを可能にする。
この機能は最近、バックドア攻撃に直面したフェデレーション学習の脆弱性の原因となっていることが判明した。
バックドア攻撃に対して効果的に防御する新しいモデルフィルタリング手法であるフェデレート層検出(FLD)を提案する。
論文 参考訳(メタデータ) (2023-03-01T07:54:54Z) - Backdoor Defense via Suppressing Model Shortcuts [91.30995749139012]
本稿では,モデル構造の角度からバックドア機構を探索する。
攻撃成功率 (ASR) は, キースキップ接続の出力を減少させると著しく低下することを示した。
論文 参考訳(メタデータ) (2022-11-02T15:39:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。