論文の概要: Automated 3D Physical Simulation of Open-world Scene with Gaussian Splatting
- arxiv url: http://arxiv.org/abs/2411.12789v1
- Date: Tue, 19 Nov 2024 12:52:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-21 16:12:25.507999
- Title: Automated 3D Physical Simulation of Open-world Scene with Gaussian Splatting
- Title(参考訳): ガウススプレイティングによるオープンワールドシーンの自動3次元物理シミュレーション
- Authors: Haoyu Zhao, Hao Wang, Xingyue Zhao, Hongqiu Wang, Zhiyu Wu, Chengjiang Long, Hua Zou,
- Abstract要約: Sim Anythingは、静的な3Dオブジェクトにインタラクティブなダイナミクスを与える物理ベースのアプローチである。
人間の視覚的推論に触発されて,MLLMに基づく物理特性知覚を提案する。
また、物理幾何学的適応サンプリングを用いて粒子をサンプリングして、オープンワールドシーンでオブジェクトをシミュレートする。
- 参考スコア(独自算出の注目度): 22.40115216094332
- License:
- Abstract: Recent advancements in 3D generation models have opened new possibilities for simulating dynamic 3D object movements and customizing behaviors, yet creating this content remains challenging. Current methods often require manual assignment of precise physical properties for simulations or rely on video generation models to predict them, which is computationally intensive. In this paper, we rethink the usage of multi-modal large language model (MLLM) in physics-based simulation, and present Sim Anything, a physics-based approach that endows static 3D objects with interactive dynamics. We begin with detailed scene reconstruction and object-level 3D open-vocabulary segmentation, progressing to multi-view image in-painting. Inspired by human visual reasoning, we propose MLLM-based Physical Property Perception (MLLM-P3) to predict mean physical properties of objects in a zero-shot manner. Based on the mean values and the object's geometry, the Material Property Distribution Prediction model (MPDP) model then estimates the full distribution, reformulating the problem as probability distribution estimation to reduce computational costs. Finally, we simulate objects in an open-world scene with particles sampled via the Physical-Geometric Adaptive Sampling (PGAS) strategy, efficiently capturing complex deformations and significantly reducing computational costs. Extensive experiments and user studies demonstrate our Sim Anything achieves more realistic motion than state-of-the-art methods within 2 minutes on a single GPU.
- Abstract(参考訳): 近年の3Dモデルの発展により、動的な3Dオブジェクトの動きをシミュレートし、振る舞いをカスタマイズする新たな可能性が開けている。
現在の手法では、シミュレーションの正確な物理特性を手動で割り振ることや、それらを予測するためにビデオ生成モデルに依存することがしばしばある。
本稿では,物理に基づくシミュレーションにおけるMLLM(Multi-modal large language model)の利用を再考し,静的な3Dオブジェクトにインタラクティブなダイナミクスを付与する物理に基づくアプローチであるSim Anythingを紹介する。
より詳細なシーン再構成とオブジェクトレベルのオープンな3次元セグメンテーションから始め,マルチビュー画像のインペインティングに進む。
人間の視覚的推論に着想を得て,ゼロショット方式で物体の物理的特性を予測するMLLM-P3を提案する。
平均値と対象物の形状に基づいて, 物質特性分布予測モデル (MPDP) モデルが全分布を推定し, 問題を確率分布推定として再構成し, 計算コストを低減させる。
最後に,物理幾何適応サンプリング(PGAS)戦略を用いて粒子をサンプリングし,複雑な変形を効率よく把握し,計算コストを大幅に削減したオープンワールドシーンの物体をシミュレートする。
大規模な実験とユーザスタディは、Sim Anythingが1つのGPU上で2分以内の最先端の手法よりも現実的な動作を達成することを実証している。
関連論文リスト
- GIC: Gaussian-Informed Continuum for Physical Property Identification and Simulation [60.33467489955188]
本稿では,視覚的観察を通して物理特性(システム同定)を推定する問題について検討する。
物理特性推定における幾何学的ガイダンスを容易にするために,我々は新しいハイブリッドフレームワークを提案する。
本研究では,3次元ガウス点集合としてオブジェクトを復元する動き分解に基づく動的3次元ガウスフレームワークを提案する。
抽出された物体表面に加えて、ガウスインフォームド連続体はシミュレーション中の物体マスクのレンダリングを可能にする。
論文 参考訳(メタデータ) (2024-06-21T07:37:17Z) - Latent Intuitive Physics: Learning to Transfer Hidden Physics from A 3D Video [58.043569985784806]
本稿では,物理シミュレーションのための伝達学習フレームワークである潜在直観物理学を紹介する。
単一の3Dビデオから流体の隠れた性質を推測し、新しいシーンで観察された流体をシミュレートすることができる。
我々は,本モデルの有効性を3つの方法で検証する: (i) 学習されたビジュアルワールド物理を用いた新しいシーンシミュレーション, (ii) 観測された流体力学の将来予測, (iii) 教師付き粒子シミュレーション。
論文 参考訳(メタデータ) (2024-06-18T16:37:44Z) - Physics3D: Learning Physical Properties of 3D Gaussians via Video Diffusion [35.71595369663293]
ビデオ拡散モデルを用いて3Dオブジェクトの様々な物理的特性を学習する新しい手法である textbfPhysics3D を提案する。
本手法では,粘弾性材料モデルに基づく高一般化物理シミュレーションシステムを設計する。
弾性材料とプラスチック材料の両方を用いて, 本手法の有効性を実証した。
論文 参考訳(メタデータ) (2024-06-06T17:59:47Z) - DreamPhysics: Learning Physical Properties of Dynamic 3D Gaussians with Video Diffusion Priors [75.83647027123119]
本稿では,映像拡散前の物体の物理的特性を学習することを提案する。
次に,物理に基づくMaterial-Point-Methodシミュレータを用いて,現実的な動きを伴う4Dコンテンツを生成する。
論文 参考訳(メタデータ) (2024-06-03T16:05:25Z) - Reconstruction and Simulation of Elastic Objects with Spring-Mass 3D Gaussians [23.572267290979045]
Spring-Gausは、複数の視点からオブジェクトのビデオから弾性オブジェクトを再構成し、シミュレーションするための3D物理オブジェクト表現である。
本研究では,3次元Spring-Massモデルを3次元ガウスカーネルに実装し,オブジェクトの視覚的外観,形状,物理力学の再構築を可能にする。
合成と実世界の両方のデータセット上でSpring-Gausを評価し,弾性物体の正確な再構成とシミュレーションを実証した。
論文 参考訳(メタデータ) (2024-03-14T14:25:10Z) - DO3D: Self-supervised Learning of Decomposed Object-aware 3D Motion and
Depth from Monocular Videos [76.01906393673897]
本研究では,モノクラービデオから3次元運動と深度を協調的に学習する自己教師手法を提案する。
本システムでは,深度を推定する深度推定モジュールと,エゴモーションと3次元物体の動きを推定する新しい分解対象3次元運動推定モジュールを備える。
我々のモデルは評価されたすべての設定において優れたパフォーマンスを提供する。
論文 参考訳(メタデータ) (2024-03-09T12:22:46Z) - 3D-IntPhys: Towards More Generalized 3D-grounded Visual Intuitive
Physics under Challenging Scenes [68.66237114509264]
複雑なシーンと流体の映像から3次元的な視覚的直感的な物理モデルを学習できるフレームワークを提案する。
本モデルでは,生画像から学習し,明示的な3次元表現空間を用いないモデルよりもはるかに優れた将来予測が可能であることを示す。
論文 参考訳(メタデータ) (2023-04-22T19:28:49Z) - 3D-OES: Viewpoint-Invariant Object-Factorized Environment Simulators [24.181604511269096]
本稿では、3次元ニューラルシーン表現空間におけるオブジェクトとエージェントの相互作用によるシーン変化を予測できる動作条件動的モデルを提案する。
この空間では、オブジェクトは互いに干渉せず、その外観は時間と視点にわたって持続する。
本モデルでは,対話対象の個数や外観,カメラ視点の多様さにまたがる予測をよく一般化することを示す。
論文 参考訳(メタデータ) (2020-11-12T16:15:52Z) - Occlusion resistant learning of intuitive physics from videos [52.25308231683798]
人工システムの鍵となる能力は、オブジェクト間の物理的相互作用を理解し、状況の将来的な結果を予測することである。
この能力は直感的な物理学と呼ばれ、近年注目されており、ビデオシーケンスからこれらの物理規則を学ぶためのいくつかの方法が提案されている。
論文 参考訳(メタデータ) (2020-04-30T19:35:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。