論文の概要: Unleashing the Potential of Multi-modal Foundation Models and Video Diffusion for 4D Dynamic Physical Scene Simulation
- arxiv url: http://arxiv.org/abs/2411.14423v1
- Date: Thu, 21 Nov 2024 18:55:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-22 15:18:53.464288
- Title: Unleashing the Potential of Multi-modal Foundation Models and Video Diffusion for 4D Dynamic Physical Scene Simulation
- Title(参考訳): 4次元物理シーンシミュレーションのための多モード基礎モデルとビデオ拡散の可能性
- Authors: Zhuoman Liu, Weicai Ye, Yan Luximon, Pengfei Wan, Di Zhang,
- Abstract要約: マルチモーダル基礎モデルとビデオ拡散を利用して、4次元動的シーンシミュレーションを実現する新しい手法を提案する。
この統合フレームワークは、現実世界のシナリオにおける動的相互作用の正確な予測と現実的なシミュレーションを可能にする。
- 参考スコア(独自算出の注目度): 9.306758077479472
- License:
- Abstract: Realistic simulation of dynamic scenes requires accurately capturing diverse material properties and modeling complex object interactions grounded in physical principles. However, existing methods are constrained to basic material types with limited predictable parameters, making them insufficient to represent the complexity of real-world materials. We introduce a novel approach that leverages multi-modal foundation models and video diffusion to achieve enhanced 4D dynamic scene simulation. Our method utilizes multi-modal models to identify material types and initialize material parameters through image queries, while simultaneously inferring 3D Gaussian splats for detailed scene representation. We further refine these material parameters using video diffusion with a differentiable Material Point Method (MPM) and optical flow guidance rather than render loss or Score Distillation Sampling (SDS) loss. This integrated framework enables accurate prediction and realistic simulation of dynamic interactions in real-world scenarios, advancing both accuracy and flexibility in physics-based simulations.
- Abstract(参考訳): 動的シーンの現実的なシミュレーションには、様々な材料特性を正確に把握し、物理原理に基づく複雑な物体相互作用をモデル化する必要がある。
しかし、既存の手法は予測可能なパラメータが限られている基本的な材料タイプに制約されているため、現実の物質の複雑さを表現するには不十分である。
マルチモーダル基礎モデルとビデオ拡散を利用して、4次元動的シーンシミュレーションを実現する新しい手法を提案する。
提案手法では,マルチモーダルモデルを用いて画像クエリによる材料タイプ識別と材料パラメータの初期化を行うとともに,詳細なシーン表現のために3次元ガウススプラットを推定する。
我々は,これらの材料パラメータを,レンダリング損失やスコア蒸留サンプリング(SDS)損失よりも,MPM法と光フロー誘導を用いて,ビデオ拡散を用いて改良する。
この統合されたフレームワークは、現実世界のシナリオにおける動的相互作用の正確な予測と現実的なシミュレーションを可能にし、物理に基づくシミュレーションの精度と柔軟性の両方を前進させる。
関連論文リスト
- PhysMotion: Physics-Grounded Dynamics From a Single Image [24.096925413047217]
物理シミュレーションの原理を取り入れた新しいフレームワークであるPhysMotionを導入し,1つの画像から生成された中間3次元表現をガイドする。
我々のアプローチは、従来のデータ駆動生成モデルの限界に対処し、より一貫した物理的に妥当な動きをもたらす。
論文 参考訳(メタデータ) (2024-11-26T07:59:11Z) - Automated 3D Physical Simulation of Open-world Scene with Gaussian Splatting [22.40115216094332]
Sim Anythingは、静的な3Dオブジェクトにインタラクティブなダイナミクスを与える物理ベースのアプローチである。
人間の視覚的推論に触発されて,MLLMに基づく物理特性知覚を提案する。
また、物理幾何学的適応サンプリングを用いて粒子をサンプリングして、オープンワールドシーンでオブジェクトをシミュレートする。
論文 参考訳(メタデータ) (2024-11-19T12:52:21Z) - Differentiable Physics-based System Identification for Robotic Manipulation of Elastoplastic Materials [43.99845081513279]
本研究は, ロボットアームが弾塑性材料と環境の物理パラメータを推定できる, 微分可能物理に基づくシステム同定(DPSI)フレームワークを提案する。
1つの現実世界の相互作用だけで、推定されたパラメータは視覚的および物理的に現実的な振る舞いを正確にシミュレートすることができる。
論文 参考訳(メタデータ) (2024-11-01T13:04:25Z) - Physics3D: Learning Physical Properties of 3D Gaussians via Video Diffusion [35.71595369663293]
ビデオ拡散モデルを用いて3Dオブジェクトの様々な物理的特性を学習する新しい手法である textbfPhysics3D を提案する。
本手法では,粘弾性材料モデルに基づく高一般化物理シミュレーションシステムを設計する。
弾性材料とプラスチック材料の両方を用いて, 本手法の有効性を実証した。
論文 参考訳(メタデータ) (2024-06-06T17:59:47Z) - DreamPhysics: Learning Physical Properties of Dynamic 3D Gaussians with Video Diffusion Priors [75.83647027123119]
本稿では,映像拡散前の物体の物理的特性を学習することを提案する。
次に,物理に基づくMaterial-Point-Methodシミュレータを用いて,現実的な動きを伴う4Dコンテンツを生成する。
論文 参考訳(メタデータ) (2024-06-03T16:05:25Z) - EmerNeRF: Emergent Spatial-Temporal Scene Decomposition via
Self-Supervision [85.17951804790515]
EmerNeRFは動的駆動シーンの時空間表現を学習するためのシンプルだが強力なアプローチである。
シーンの幾何学、外観、動き、セマンティクスを自己ブートストラップで同時にキャプチャする。
本手法はセンサシミュレーションにおける最先端性能を実現する。
論文 参考訳(メタデータ) (2023-11-03T17:59:55Z) - Differentiable Blocks World: Qualitative 3D Decomposition by Rendering
Primitives [70.32817882783608]
本稿では,3次元プリミティブを用いて,シンプルでコンパクトで動作可能な3次元世界表現を実現する手法を提案する。
既存の3次元入力データに依存するプリミティブ分解法とは異なり,本手法は画像を直接操作する。
得られたテクスチャ化されたプリミティブは入力画像を忠実に再構成し、視覚的な3Dポイントを正確にモデル化する。
論文 参考訳(メタデータ) (2023-07-11T17:58:31Z) - Neural Implicit Representations for Physical Parameter Inference from a Single Video [49.766574469284485]
本稿では,外見モデルのためのニューラル暗黙表現と,物理現象をモデル化するためのニューラル常微分方程式(ODE)を組み合わせることを提案する。
提案モデルでは,大規模なトレーニングデータセットを必要とする既存のアプローチとは対照的に,単一のビデオから物理的パラメータを識別することが可能になる。
ニューラル暗示表現を使用することで、高解像度ビデオの処理とフォトリアリスティック画像の合成が可能になる。
論文 参考訳(メタデータ) (2022-04-29T11:55:35Z) - MoCo-Flow: Neural Motion Consensus Flow for Dynamic Humans in Stationary
Monocular Cameras [98.40768911788854]
4次元連続時間変動関数を用いて動的シーンをモデル化する表現であるMoCo-Flowを紹介する。
私たちの研究の中心には、運動フロー上の運動コンセンサス正規化によって制約される、新しい最適化の定式化がある。
複雑度の異なる人間の動きを含む複数のデータセット上でMoCo-Flowを広範囲に評価した。
論文 参考訳(メタデータ) (2021-06-08T16:03:50Z) - gradSim: Differentiable simulation for system identification and
visuomotor control [66.37288629125996]
本稿では,微分可能マルチフィジカルシミュレーションと微分可能レンダリングを活用し,3次元監督への依存を克服するフレームワークであるgradsimを提案する。
当社の統合グラフは、状態ベースの(3D)監督に頼ることなく、挑戦的なバイスモメータ制御タスクで学習を可能にします。
論文 参考訳(メタデータ) (2021-04-06T16:32:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。