論文の概要: Efficient Medicinal Image Transmission and Resolution Enhancement via GAN
- arxiv url: http://arxiv.org/abs/2411.12833v1
- Date: Tue, 19 Nov 2024 19:39:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-21 16:12:51.349324
- Title: Efficient Medicinal Image Transmission and Resolution Enhancement via GAN
- Title(参考訳): GANによる効率的な医用画像伝送と高分解能化
- Authors: Rishabh Kumar Sharma, Mukund Sharma, Pushkar Sharma, Jeetashree Aparjeeta,
- Abstract要約: 本稿では,ネットワーク伝送の最適化により画像の品質を向上する効率的な手法を提案する。
Real-ESRGANによるX線画像の低解像度ファイルへの前処理は、サーバの負荷と送信帯域幅の削減に役立つ。
低解像度画像はReal-ESRGANを用いて受信端でアップスケールされる。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: While X-ray imaging is indispensable in medical diagnostics, it inherently carries with it those noises and limitations on resolution that mask the details necessary for diagnosis. B/W X-ray images require a careful balance between noise suppression and high-detail preservation to ensure clarity in soft-tissue structures and bone edges. While traditional methods, such as CNNs and early super-resolution models like ESRGAN, have enhanced image resolution, they often perform poorly regarding high-frequency detail preservation and noise control for B/W imaging. We are going to present one efficient approach that improves the quality of an image with the optimization of network transmission in the following paper. The pre-processing of X-ray images into low-resolution files by Real-ESRGAN, a version of ESRGAN elucidated and improved, helps reduce the server load and transmission bandwidth. Lower-resolution images are upscaled at the receiving end using Real-ESRGAN, fine-tuned for real-world image degradation. The model integrates Residual-in-Residual Dense Blocks with perceptual and adversarial loss functions for high-quality upscaled images with low noise. We further fine-tune Real-ESRGAN by adapting it to the specific B/W noise and contrast characteristics. This suppresses noise artifacts without compromising detail. The comparative evaluation conducted shows that our approach achieves superior noise reduction and detail clarity compared to state-of-the-art CNN-based and ESRGAN models, apart from reducing network bandwidth requirements. These benefits are confirmed both by quantitative metrics, including Peak Signal-to-Noise Ratio and Structural Similarity Index, and by qualitative assessments, which indicate the potential of Real-ESRGAN for diagnostic-quality X-ray imaging and for efficient medical data transmission.
- Abstract(参考訳): X線撮影は医学的な診断には不可欠だが、診断に必要な詳細を隠蔽するノイズや解像度の制限を本質的に担っている。
B/WX線画像は、軟部組織と骨縁の明瞭さを確保するために、ノイズ抑制と高精細保存の間に慎重にバランスを取る必要がある。
CNNのような従来の手法やESRGANのような初期の超高解像度モデルでは画像解像度が向上しているが、B/W画像の高頻度ディテール保存やノイズコントロールに関しては、しばしば不十分に機能する。
以下の論文では、ネットワーク伝送の最適化により、画像の品質を向上させるための効率的なアプローチを提示する。
ESRGANの改良版であるReal-ESRGANによる低解像度ファイルへのX線画像の事前処理は、サーバ負荷と伝送帯域幅の削減に役立つ。
低解像度画像はReal-ESRGANを用いて受信端でアップスケールされる。
このモデルは、残差Dense Blocksと知覚的・対角的損失関数を統合し、低ノイズで高品質なアップスケール画像を生成する。
さらに、特定のB/Wノイズとコントラスト特性に適応することで、Real-ESRGANをさらに微調整する。
これにより、詳細を妥協することなく、ノイズアーティファクトを抑制できる。
比較評価の結果,提案手法は,ネットワーク帯域幅の削減とは別に,最先端のCNNベースモデルやESRGANモデルと比較して,ノイズの低減と詳細性の向上を実現している。
これらの利点は、ピーク信号対雑音比や構造類似度指数などの定量的指標と、診断品質X線イメージングにおけるReal-ESRGANの可能性を示す定性的な評価と、効率的な医療データ伝送の両方によって確認される。
関連論文リスト
- Unifying Subsampling Pattern Variations for Compressed Sensing MRI with Neural Operators [72.79532467687427]
圧縮センシングMRI(Compressed Sensing MRI)は、身体の内部解剖像をアンダーサンプルと圧縮された測定値から再構成する。
ディープニューラルネットワークは、高度にアンサンプされた測定結果から高品質なイメージを再構築する大きな可能性を示している。
CS-MRIにおけるサブサンプリングパターンや画像解像度に頑健な統一モデルを提案する。
論文 参考訳(メタデータ) (2024-10-05T20:03:57Z) - Enhanced Denoising of Optical Coherence Tomography Images Using Residual U-Net [0.0]
本稿では,雑音を効果的に低減し,画像の明瞭度を向上するResidual U-Netアーキテクチャを用いた拡張型復調モデルを提案する。
ピーク信号ノイズ比(PSNR)はPS OCT画像に対して34.343$pm$1.113であり、構造類似度指数測定(SSIM)値は0.885$pm$0.030である。
論文 参考訳(メタデータ) (2024-07-18T01:35:03Z) - Ultrasound Image Enhancement using CycleGAN and Perceptual Loss [4.428854369140015]
本研究は超音波画像,特に携帯型ハンドヘルドデバイスで捉えた画像の高機能化を目的とした高度なフレームワークを導入する。
我々は,5臓器系における超音波画像強調のために,CycleGANモデルを用いた。
論文 参考訳(メタデータ) (2023-12-18T23:21:00Z) - Unpaired Optical Coherence Tomography Angiography Image Super-Resolution
via Frequency-Aware Inverse-Consistency GAN [6.717440708401628]
本稿では,GANに基づくOCTA画像の非ペア化超解像法を提案する。
また,再構成画像の正確なスペクトル化を容易にするため,識別器の周波数認識による逆方向の損失も提案する。
実験により,本手法は,他の最先端の未経験手法よりも定量的,視覚的に優れていることが示された。
論文 参考訳(メタデータ) (2023-09-29T14:19:51Z) - On Sensitivity and Robustness of Normalization Schemes to Input
Distribution Shifts in Automatic MR Image Diagnosis [58.634791552376235]
深層学習(DL)モデルは、再構成画像を入力として、複数の疾患の診断において最先端のパフォーマンスを達成した。
DLモデルは、トレーニングとテストフェーズ間の入力データ分布の変化につながるため、さまざまなアーティファクトに敏感である。
本稿では,グループ正規化やレイヤ正規化といった他の正規化手法を用いて,画像のさまざまなアーチファクトに対して,モデル性能にロバスト性を注入することを提案する。
論文 参考訳(メタデータ) (2023-06-23T03:09:03Z) - Fine-tuned Generative Adversarial Network-based Model for Medical Image Super-Resolution [2.647302105102753]
The Real-Enhanced Super-Resolution Generative Adversarial Network (Real-ESRGAN) is a practical model for recovery HR images from real-world LR images。
実世界の画像劣化をシミュレートするReal-ESRGANの高次劣化モデルを用いる。
提案モデルでは,Real-ESRGANモデルに比べて知覚品質が優れ,細部を効果的に保存し,より現実的なテクスチャで画像を生成する。
論文 参考訳(メタデータ) (2022-11-01T16:48:04Z) - Preservation of High Frequency Content for Deep Learning-Based Medical
Image Classification [74.84221280249876]
大量の胸部ラジオグラフィーの効率的な分析は、医師や放射線技師を助けることができる。
本稿では,視覚情報の効率的な識別と符号化のための離散ウェーブレット変換(DWT)を提案する。
論文 参考訳(メタデータ) (2022-05-08T15:29:54Z) - Harmonizing Pathological and Normal Pixels for Pseudo-healthy Synthesis [68.5287824124996]
そこで本研究では,新しいタイプの識別器であるセグメンタを提案し,病変の正確な特定と擬似健康画像の視覚的品質の向上を図っている。
医用画像強調に生成画像を適用し,低コントラスト問題に対処するために拡張結果を利用する。
BraTSのT2モダリティに関する総合的な実験により、提案手法は最先端の手法よりも大幅に優れていることが示された。
論文 参考訳(メタデータ) (2022-03-29T08:41:17Z) - Multimodal-Boost: Multimodal Medical Image Super-Resolution using
Multi-Attention Network with Wavelet Transform [5.416279158834623]
対応する画像分解能の喪失は、医用画像診断の全体的な性能を低下させる。
ディープラーニングベースのシングルイメージスーパーレゾリューション(SISR)アルゴリズムは、全体的な診断フレームワークに革命をもたらした。
本研究は,低周波データから高頻度情報を学習する深層マルチアテンションモジュールを用いたGAN(Generative Adversarial Network)を提案する。
論文 参考訳(メタデータ) (2021-10-22T10:13:46Z) - Adaptive Gradient Balancing for UndersampledMRI Reconstruction and
Image-to-Image Translation [60.663499381212425]
本研究では,新しい適応勾配バランス手法を併用したwasserstein生成逆ネットワークを用いて,画質の向上を図る。
MRIでは、他の技術よりも鮮明な画像を生成する高品質の再構築を維持しながら、アーティファクトを最小限に抑えます。
論文 参考訳(メタデータ) (2021-04-05T13:05:22Z) - Perception Consistency Ultrasound Image Super-resolution via
Self-supervised CycleGAN [63.49373689654419]
自己スーパービジョンとサイクル生成対向ネットワーク(CycleGAN)に基づく新しい知覚整合超音波画像超解像法を提案する。
まず,検査用超音波LR画像のHR父子とLR子を画像強調により生成する。
次に、LR-SR-LRとHR-LR-SRのサイクル損失と判別器の対角特性をフル活用して、より知覚的に一貫性のあるSR結果を生成する。
論文 参考訳(メタデータ) (2020-12-28T08:24:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。