Tensor-Based Foundations of Ordinary Least Squares and Neural Network Regression Models
- URL: http://arxiv.org/abs/2411.12873v1
- Date: Tue, 19 Nov 2024 21:36:04 GMT
- Title: Tensor-Based Foundations of Ordinary Least Squares and Neural Network Regression Models
- Authors: Roberto Dias Algarte,
- Abstract summary: This article introduces a novel approach to the mathematical development of Ordinary Least Squares and Neural Network regression models.
By leveraging Analysis and fundamental matrix computations, the theoretical foundations of both models are meticulously detailed and extended to their complete algorithmic forms.
- Score: 0.0
- License:
- Abstract: This article introduces a novel approach to the mathematical development of Ordinary Least Squares and Neural Network regression models, diverging from traditional methods in current Machine Learning literature. By leveraging Tensor Analysis and fundamental matrix computations, the theoretical foundations of both models are meticulously detailed and extended to their complete algorithmic forms. The study culminates in the presentation of three algorithms, including a streamlined version of the Backpropagation Algorithm for Neural Networks, illustrating the benefits of this new mathematical approach.
Related papers
- Foundations and Frontiers of Graph Learning Theory [81.39078977407719]
Recent advancements in graph learning have revolutionized the way to understand and analyze data with complex structures.
Graph Neural Networks (GNNs), i.e. neural network architectures designed for learning graph representations, have become a popular paradigm.
This article provides a comprehensive summary of the theoretical foundations and breakthroughs concerning the approximation and learning behaviors intrinsic to prevalent graph learning models.
arXiv Detail & Related papers (2024-07-03T14:07:41Z) - Front-propagation Algorithm: Explainable AI Technique for Extracting Linear Function Approximations from Neural Networks [0.0]
This paper introduces the front-propagation algorithm, a novel AI technique designed to elucidate the decision-making logic of deep neural networks.
Unlike other popular explainability algorithms such as Integrated Gradients or Shapley Values, the proposed algorithm is able to extract an accurate and consistent linear function explanation of the network.
We demonstrate its efficacy in providing accurate linear functions with three different neural network architectures trained on publicly available benchmark datasets.
arXiv Detail & Related papers (2024-05-25T14:50:23Z) - A singular Riemannian Geometry Approach to Deep Neural Networks III. Piecewise Differentiable Layers and Random Walks on $n$-dimensional Classes [49.32130498861987]
We study the case of non-differentiable activation functions, such as ReLU.
Two recent works introduced a geometric framework to study neural networks.
We illustrate our findings with some numerical experiments on classification of images and thermodynamic problems.
arXiv Detail & Related papers (2024-04-09T08:11:46Z) - A Survey on Statistical Theory of Deep Learning: Approximation, Training Dynamics, and Generative Models [13.283281356356161]
We review the literature on statistical theories of neural networks from three perspectives.
Results on excess risks for neural networks are reviewed.
Papers that attempt to answer how the neural network finds the solution that can generalize well on unseen data'' are reviewed.
arXiv Detail & Related papers (2024-01-14T02:30:19Z) - Neural network models [0.0]
This work presents the current collection of mathematical models related to neural networks.
It proposes a new family of such with extended structure and dynamics in order to attain a selection of cognitive capabilities.
arXiv Detail & Related papers (2023-01-08T05:52:13Z) - Matrix factorization with neural networks [0.0]
We introduce a new decimation' scheme that maps it to neural network models of associative memory.
We show that decimation is able to factorize extensive-rank matrices and to denoise them efficiently.
arXiv Detail & Related papers (2022-12-05T08:58:56Z) - A Recursively Recurrent Neural Network (R2N2) Architecture for Learning
Iterative Algorithms [64.3064050603721]
We generalize Runge-Kutta neural network to a recurrent neural network (R2N2) superstructure for the design of customized iterative algorithms.
We demonstrate that regular training of the weight parameters inside the proposed superstructure on input/output data of various computational problem classes yields similar iterations to Krylov solvers for linear equation systems, Newton-Krylov solvers for nonlinear equation systems, and Runge-Kutta solvers for ordinary differential equations.
arXiv Detail & Related papers (2022-11-22T16:30:33Z) - Scalable computation of prediction intervals for neural networks via
matrix sketching [79.44177623781043]
Existing algorithms for uncertainty estimation require modifying the model architecture and training procedure.
This work proposes a new algorithm that can be applied to a given trained neural network and produces approximate prediction intervals.
arXiv Detail & Related papers (2022-05-06T13:18:31Z) - Computational Morphology with Neural Network Approaches [5.913574957971709]
Neural network approaches have been applied to computational morphology with great success.
This paper starts with a brief introduction to computational morphology, followed by a review of recent work on computational morphology with neural network approaches.
We will analyze the advantages and problems of neural network approaches to computational morphology, and point out some directions to be explored by future research and study.
arXiv Detail & Related papers (2021-05-19T21:17:53Z) - Connecting Weighted Automata, Tensor Networks and Recurrent Neural
Networks through Spectral Learning [58.14930566993063]
We present connections between three models used in different research fields: weighted finite automata(WFA) from formal languages and linguistics, recurrent neural networks used in machine learning, and tensor networks.
We introduce the first provable learning algorithm for linear 2-RNN defined over sequences of continuous vectors input.
arXiv Detail & Related papers (2020-10-19T15:28:00Z) - Developing Constrained Neural Units Over Time [81.19349325749037]
This paper focuses on an alternative way of defining Neural Networks, that is different from the majority of existing approaches.
The structure of the neural architecture is defined by means of a special class of constraints that are extended also to the interaction with data.
The proposed theory is cast into the time domain, in which data are presented to the network in an ordered manner.
arXiv Detail & Related papers (2020-09-01T09:07:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.