Real-Time Energy-Optimal Path Planning for Electric Vehicles
- URL: http://arxiv.org/abs/2411.12964v1
- Date: Wed, 20 Nov 2024 01:39:08 GMT
- Title: Real-Time Energy-Optimal Path Planning for Electric Vehicles
- Authors: Saman Ahmadi, Guido Tack, Daniel Harabor, Philip Kilby, Mahdi Jalili,
- Abstract summary: We develop an accurate energy model that incorporates key vehicle dynamics parameters into energy calculations.
We also introduce two novel online reweighting functions that allow for a faster, pre-processing free, pathfinding.
- Score: 13.38255011577359
- License:
- Abstract: The rapid adoption of electric vehicles (EVs) in modern transport systems has made energy-aware routing a critical task in their successful integration, especially within large-scale networks. In cases where an EV's remaining energy is limited and charging locations are not easily accessible, some destinations may only be reachable through an energy-optimal path: a route that consumes less energy than all other alternatives. The feasibility of such energy-efficient paths depends heavily on the accuracy of the energy model used for planning, and thus failing to account for vehicle dynamics can lead to inaccurate energy estimates, rendering some planned routes infeasible in reality. This paper explores the impact of vehicle dynamics on energy-optimal path planning for EVs. We develop an accurate energy model that incorporates key vehicle dynamics parameters into energy calculations, thereby reducing the risk of planning infeasible paths under battery constraints. The paper also introduces two novel online reweighting functions that allow for a faster, pre-processing free, pathfinding in the presence of negative energy costs resulting from regenerative braking, making them ideal for real-time applications. Through extensive experimentation on real-world transport networks, we demonstrate that our approach considerably enhances energy-optimal pathfinding for EVs in both computational efficiency and energy estimation accuracy.
Related papers
- Energy-efficient Hybrid Model Predictive Trajectory Planning for Autonomous Electric Vehicles [5.962979693707366]
This paper introduces an Energy-efficient Hybrid Model Predictive Planner (EHMPP), which employs an energy-saving optimization strategy.
It has been validated through simulation experiments on the Prescan, CarSim, and Matlab platforms, demonstrating that it can increase passive recovery energy by 11.74%.
arXiv Detail & Related papers (2024-11-09T08:21:06Z) - Green vehicle routing problem that jointly optimizes delivery speed and routing based on the characteristics of electric vehicles [0.0]
This paper establishes an energy consumption model using real electric vehicles.
The energy consumption model also incorporates the effects of vehicle start/stop, speed, distance, and load on energy consumption.
An improved Adaptive Genetic Algorithm is used to solve for the most energy-efficient route.
arXiv Detail & Related papers (2024-10-04T08:08:15Z) - Data-Driven Probabilistic Energy Consumption Estimation for Battery
Electric Vehicles with Model Uncertainty [1.0787390511207684]
We propose a new driver behaviour-centric EV energy consumption estimation model using probabilistic neural networks with model uncertainty.
By incorporating model uncertainty into neural networks, we have created an ensemble of neural networks using Monte Carlo.
Our approach achieves a mean absolute percentage error of 9.3% and outperforms other existing EV energy consumption models in terms of accuracy.
arXiv Detail & Related papers (2023-07-02T04:30:20Z) - Federated Reinforcement Learning for Real-Time Electric Vehicle Charging
and Discharging Control [42.17503767317918]
This paper develops an optimal EV charging/discharging control strategy for different EV users under dynamic environments.
A horizontal federated reinforcement learning (HFRL)-based method is proposed to fit various users' behaviors and dynamic environments.
Simulation results illustrate that the proposed real-time EV charging/discharging control strategy can perform well among various factors.
arXiv Detail & Related papers (2022-10-04T08:22:46Z) - A Multi-Objective approach to the Electric Vehicle Routing Problem [0.0]
The electric vehicle routing problem (EVRP) has garnered great interest from researchers and industrialists in an attempt to move from fuel-based vehicles to healthier and more efficient electric vehicles (EVs)
Previous works target logistics and delivery-related solutions wherein a homogeneous fleet of commercial EVs have to return to the initial point after making multiple stops.
We perform multi-objective optimization - minimizing the total trip time and the cumulative cost of charging.
arXiv Detail & Related papers (2022-08-26T05:09:59Z) - Learning energy-efficient driving behaviors by imitating experts [75.12960180185105]
This paper examines the role of imitation learning in bridging the gap between control strategies and realistic limitations in communication and sensing.
We show that imitation learning can succeed in deriving policies that, if adopted by 5% of vehicles, may boost the energy-efficiency of networks with varying traffic conditions by 15% using only local observations.
arXiv Detail & Related papers (2022-06-28T17:08:31Z) - An Energy Consumption Model for Electrical Vehicle Networks via Extended
Federated-learning [50.85048976506701]
This paper proposes a novel solution to range anxiety based on a federated-learning model.
It is capable of estimating battery consumption and providing energy-efficient route planning for vehicle networks.
arXiv Detail & Related papers (2021-11-13T15:03:44Z) - Efficient algorithms for electric vehicles' min-max routing problem [4.640835690336652]
An increase in greenhouse gases emission from the transportation sector has led companies and the government to elevate and support the production of electric vehicles (EV)
With recent developments in urbanization and e-commerce, transportation companies are replacing their conventional fleet with EVs to strengthen the efforts for sustainable and environment-friendly operations.
deploying a fleet of EVs asks for efficient routing and recharging strategies to alleviate their limited range and mitigate the battery degradation rate.
arXiv Detail & Related papers (2020-08-07T18:45:26Z) - Data Freshness and Energy-Efficient UAV Navigation Optimization: A Deep
Reinforcement Learning Approach [88.45509934702913]
We design a navigation policy for multiple unmanned aerial vehicles (UAVs) where mobile base stations (BSs) are deployed.
We incorporate different contextual information such as energy and age of information (AoI) constraints to ensure the data freshness at the ground BS.
By applying the proposed trained model, an effective real-time trajectory policy for the UAV-BSs captures the observable network states over time.
arXiv Detail & Related papers (2020-02-21T07:29:15Z) - Risk-Aware Energy Scheduling for Edge Computing with Microgrid: A
Multi-Agent Deep Reinforcement Learning Approach [82.6692222294594]
We study a risk-aware energy scheduling problem for a microgrid-powered MEC network.
We derive the solution by applying a multi-agent deep reinforcement learning (MADRL)-based advantage actor-critic (A3C) algorithm with shared neural networks.
arXiv Detail & Related papers (2020-02-21T02:14:38Z) - Multi-Agent Meta-Reinforcement Learning for Self-Powered and Sustainable
Edge Computing Systems [87.4519172058185]
An effective energy dispatch mechanism for self-powered wireless networks with edge computing capabilities is studied.
A novel multi-agent meta-reinforcement learning (MAMRL) framework is proposed to solve the formulated problem.
Experimental results show that the proposed MAMRL model can reduce up to 11% non-renewable energy usage and by 22.4% the energy cost.
arXiv Detail & Related papers (2020-02-20T04:58:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.