Efficient algorithms for electric vehicles' min-max routing problem
- URL: http://arxiv.org/abs/2008.03333v2
- Date: Fri, 30 Apr 2021 17:14:53 GMT
- Title: Efficient algorithms for electric vehicles' min-max routing problem
- Authors: Seyed Sajjad Fazeli, Saravanan Venkatachalam, Jonathon M. Smereka
- Abstract summary: An increase in greenhouse gases emission from the transportation sector has led companies and the government to elevate and support the production of electric vehicles (EV)
With recent developments in urbanization and e-commerce, transportation companies are replacing their conventional fleet with EVs to strengthen the efforts for sustainable and environment-friendly operations.
deploying a fleet of EVs asks for efficient routing and recharging strategies to alleviate their limited range and mitigate the battery degradation rate.
- Score: 4.640835690336652
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: An increase in greenhouse gases emission from the transportation sector has
led companies and the government to elevate and support the production of
electric vehicles (EV). With recent developments in urbanization and
e-commerce, transportation companies are replacing their conventional fleet
with EVs to strengthen the efforts for sustainable and environment-friendly
operations. However, deploying a fleet of EVs asks for efficient routing and
recharging strategies to alleviate their limited range and mitigate the battery
degradation rate. In this work, a fleet of electric vehicles is considered for
transportation and logistic capabilities with limited battery capacity and
scarce charging station availability. We introduce a min-max electric vehicle
routing problem (MEVRP) where the maximum distance traveled by any EV is
minimized while considering charging stations for recharging. We propose an
efficient branch and cut framework and a three-phase hybrid heuristic algorithm
that can efficiently solve a variety of instances. Extensive computational
results and sensitivity analyses are performed to corroborate the efficiency of
the proposed approach, both quantitatively and qualitatively.
Related papers
- Real-Time Energy-Optimal Path Planning for Electric Vehicles [13.38255011577359]
We develop an accurate energy model that incorporates key vehicle dynamics parameters into energy calculations.
We also introduce two novel online reweighting functions that allow for a faster, pre-processing free, pathfinding.
arXiv Detail & Related papers (2024-11-20T01:39:08Z) - Charge Manipulation Attacks Against Smart Electric Vehicle Charging Stations and Deep Learning-based Detection Mechanisms [49.37592437398933]
"Smart" electric vehicle charging stations (EVCSs) will be a key step toward achieving green transportation.
We investigate charge manipulation attacks (CMAs) against EV charging, in which an attacker manipulates the information exchanged during smart charging operations.
We propose an unsupervised deep learning-based mechanism to detect CMAs by monitoring the parameters involved in EV charging.
arXiv Detail & Related papers (2023-10-18T18:38:59Z) - Recent Progress in Energy Management of Connected Hybrid Electric
Vehicles Using Reinforcement Learning [6.851787321368938]
The shift towards electrifying transportation aims to curb environmental concerns related to fossil fuel consumption.
The evolution of energy management systems (EMS) from HEVs to connected hybrid electric vehicles (CHEVs) represent a pivotal shift.
This review bridges the gap, highlighting challenges, advancements, and potential contributions of RL-based solutions for future sustainable transportation systems.
arXiv Detail & Related papers (2023-08-28T14:12:52Z) - Federated Reinforcement Learning for Electric Vehicles Charging Control
on Distribution Networks [42.04263644600909]
Multi-agent deep reinforcement learning (MADRL) has proven its effectiveness in EV charging control.
Existing MADRL-based approaches fail to consider the natural power flow of EV charging/discharging in the distribution network.
This paper proposes a novel approach that combines multi-EV charging/discharging with a radial distribution network (RDN) operating under optimal power flow.
arXiv Detail & Related papers (2023-08-17T05:34:46Z) - Federated Reinforcement Learning for Real-Time Electric Vehicle Charging
and Discharging Control [42.17503767317918]
This paper develops an optimal EV charging/discharging control strategy for different EV users under dynamic environments.
A horizontal federated reinforcement learning (HFRL)-based method is proposed to fit various users' behaviors and dynamic environments.
Simulation results illustrate that the proposed real-time EV charging/discharging control strategy can perform well among various factors.
arXiv Detail & Related papers (2022-10-04T08:22:46Z) - Data-Driven Chance Constrained AC-OPF using Hybrid Sparse Gaussian
Processes [57.70237375696411]
The paper proposes a fast data-driven setup that uses the sparse and hybrid Gaussian processes (GP) framework to model the power flow equations with input uncertainty.
We advocate the efficiency of the proposed approach by a numerical study over multiple IEEE test cases showing up to two times faster and more accurate solutions.
arXiv Detail & Related papers (2022-08-30T09:27:59Z) - A Multi-Objective approach to the Electric Vehicle Routing Problem [0.0]
The electric vehicle routing problem (EVRP) has garnered great interest from researchers and industrialists in an attempt to move from fuel-based vehicles to healthier and more efficient electric vehicles (EVs)
Previous works target logistics and delivery-related solutions wherein a homogeneous fleet of commercial EVs have to return to the initial point after making multiple stops.
We perform multi-objective optimization - minimizing the total trip time and the cumulative cost of charging.
arXiv Detail & Related papers (2022-08-26T05:09:59Z) - A new Hyper-heuristic based on Adaptive Simulated Annealing and
Reinforcement Learning for the Capacitated Electric Vehicle Routing Problem [9.655068751758952]
Electric vehicles (EVs) have been adopted in urban areas to reduce environmental pollution and global warming.
There are still deficiencies in routing the trajectories of last-mile logistics that continue to impact social and economic sustainability.
This paper proposes a hyper-heuristic approach called Hyper-heuristic Adaptive Simulated Annealing with Reinforcement Learning.
arXiv Detail & Related papers (2022-06-07T11:10:38Z) - A Reinforcement Learning Approach for Electric Vehicle Routing Problem
with Vehicle-to-Grid Supply [2.6066825041242367]
We present QuikRouteFinder that uses reinforcement learning (RL) for EV routing to overcome these challenges.
Results from RL are compared against exact formulations based on mixed-integer linear program (MILP) and genetic algorithm (GA) metaheuristics.
arXiv Detail & Related papers (2022-04-12T06:13:06Z) - An Energy Consumption Model for Electrical Vehicle Networks via Extended
Federated-learning [50.85048976506701]
This paper proposes a novel solution to range anxiety based on a federated-learning model.
It is capable of estimating battery consumption and providing energy-efficient route planning for vehicle networks.
arXiv Detail & Related papers (2021-11-13T15:03:44Z) - Risk Adversarial Learning System for Connected and Autonomous Vehicle
Charging [43.42105971560163]
We study the design of a rational decision support system (RDSS) for a connected and autonomous vehicle charging infrastructure (CAV-CI)
In the considered CAV-CI, the distribution system operator (DSO) deploys electric vehicle supply equipment (EVSE) to provide an EV charging facility for human-driven connected vehicles (CVs) and autonomous vehicles (AVs)
The charging request by the human-driven EV becomes irrational when it demands more energy and charging period than its actual need.
We propose a novel risk adversarial multi-agent learning system (ALS) for CAV-CI to solve
arXiv Detail & Related papers (2021-08-02T02:38:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.