Shrinking POMCP: A Framework for Real-Time UAV Search and Rescue
- URL: http://arxiv.org/abs/2411.12967v1
- Date: Wed, 20 Nov 2024 01:41:29 GMT
- Title: Shrinking POMCP: A Framework for Real-Time UAV Search and Rescue
- Authors: Yunuo Zhang, Baiting Luo, Ayan Mukhopadhyay, Daniel Stojcsics, Daniel Elenius, Anirban Roy, Susmit Jha, Miklos Maroti, Xenofon Koutsoukos, Gabor Karsai, Abhishek Dubey,
- Abstract summary: We present a comprehensive approach to optimize UAV-based search and rescue operations in neighborhood areas.
The path planning problem is formulated as a partially observable Markov decision process (POMDP)
We propose a novel Shrinking POMCP'' approach to address time constraints.
- Score: 10.399964979693996
- License:
- Abstract: Efficient path optimization for drones in search and rescue operations faces challenges, including limited visibility, time constraints, and complex information gathering in urban environments. We present a comprehensive approach to optimize UAV-based search and rescue operations in neighborhood areas, utilizing both a 3D AirSim-ROS2 simulator and a 2D simulator. The path planning problem is formulated as a partially observable Markov decision process (POMDP), and we propose a novel ``Shrinking POMCP'' approach to address time constraints. In the AirSim environment, we integrate our approach with a probabilistic world model for belief maintenance and a neurosymbolic navigator for obstacle avoidance. The 2D simulator employs surrogate ROS2 nodes with equivalent functionality. We compare trajectories generated by different approaches in the 2D simulator and evaluate performance across various belief types in the 3D AirSim-ROS simulator. Experimental results from both simulators demonstrate that our proposed shrinking POMCP solution achieves significant improvements in search times compared to alternative methods, showcasing its potential for enhancing the efficiency of UAV-assisted search and rescue operations.
Related papers
- UAV-Borne Mapping Algorithms for Low-Altitude and High-Speed Drone Applications [0.4681661603096333]
This article presents an analysis of current state-of-the-art sensors and how they work with several mapping algorithms for UAV (Unmanned Aerial Vehicle) applications.
A new experimental construct is created using highly realistic environments made possible by integrating the AirSim simulator with Google 3D maps models.
arXiv Detail & Related papers (2024-01-12T07:04:44Z) - OccNeRF: Advancing 3D Occupancy Prediction in LiDAR-Free Environments [77.0399450848749]
We propose an OccNeRF method for training occupancy networks without 3D supervision.
We parameterize the reconstructed occupancy fields and reorganize the sampling strategy to align with the cameras' infinite perceptive range.
For semantic occupancy prediction, we design several strategies to polish the prompts and filter the outputs of a pretrained open-vocabulary 2D segmentation model.
arXiv Detail & Related papers (2023-12-14T18:58:52Z) - Rethinking Drone-Based Search and Rescue with Aerial Person Detection [79.76669658740902]
The visual inspection of aerial drone footage is an integral part of land search and rescue (SAR) operations today.
We propose a novel deep learning algorithm to automate this aerial person detection (APD) task.
We present the novel Aerial Inspection RetinaNet (AIR) algorithm as the combination of these contributions.
arXiv Detail & Related papers (2021-11-17T21:48:31Z) - Nonprehensile Riemannian Motion Predictive Control [57.295751294224765]
We introduce a novel Real-to-Sim reward analysis technique to reliably imagine and predict the outcome of taking possible actions for a real robotic platform.
We produce a closed-loop controller to reactively push objects in a continuous action space.
We observe that RMPC is robust in cluttered as well as occluded environments and outperforms the baselines.
arXiv Detail & Related papers (2021-11-15T18:50:04Z) - Trajectory Design for UAV-Based Internet-of-Things Data Collection: A
Deep Reinforcement Learning Approach [93.67588414950656]
In this paper, we investigate an unmanned aerial vehicle (UAV)-assisted Internet-of-Things (IoT) system in a 3D environment.
We present a TD3-based trajectory design for completion time minimization (TD3-TDCTM) algorithm.
Our simulation results show the superiority of the proposed TD3-TDCTM algorithm over three conventional non-learning based baseline methods.
arXiv Detail & Related papers (2021-07-23T03:33:29Z) - A Vision Based Deep Reinforcement Learning Algorithm for UAV Obstacle
Avoidance [1.2693545159861856]
We present two techniques for improving exploration for UAV obstacle avoidance.
The first is a convergence-based approach that uses convergence error to iterate through unexplored actions and temporal threshold to balance exploration and exploitation.
The second is a guidance-based approach which uses a Gaussian mixture distribution to compare previously seen states to a predicted next state in order to select the next action.
arXiv Detail & Related papers (2021-03-11T01:15:26Z) - Autonomous UAV Exploration of Dynamic Environments via Incremental
Sampling and Probabilistic Roadmap [0.3867363075280543]
We propose a novel dynamic exploration planner (DEP) for exploring unknown environments using incremental sampling and Probabilistic Roadmap (PRM)
Our method safely explores dynamic environments and outperforms the benchmark planners in terms of exploration time, path length, and computational time.
arXiv Detail & Related papers (2020-10-14T22:52:37Z) - Transferable Active Grasping and Real Embodied Dataset [48.887567134129306]
We show how to search for feasible viewpoints for grasping by the use of hand-mounted RGB-D cameras.
A practical 3-stage transferable active grasping pipeline is developed, that is adaptive to unseen clutter scenes.
In our pipeline, we propose a novel mask-guided reward to overcome the sparse reward issue in grasping and ensure category-irrelevant behavior.
arXiv Detail & Related papers (2020-04-28T08:15:35Z) - Congestion-aware Evacuation Routing using Augmented Reality Devices [96.68280427555808]
We present a congestion-aware routing solution for indoor evacuation, which produces real-time individual-customized evacuation routes among multiple destinations.
A population density map, obtained on-the-fly by aggregating locations of evacuees from user-end Augmented Reality (AR) devices, is used to model the congestion distribution inside a building.
arXiv Detail & Related papers (2020-04-25T22:54:35Z) - Using Deep Reinforcement Learning Methods for Autonomous Vessels in 2D
Environments [11.657524999491029]
In this work, we used deep reinforcement learning combining Q-learning with a neural representation to avoid instability.
Our methodology uses deep q-learning and combines it with a rolling wave planning approach on agile methodology.
Experimental results show that the proposed method enhanced the performance of VVN by 55.31 on average for long-distance missions.
arXiv Detail & Related papers (2020-03-23T12:58:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.