論文の概要: LLMSteer: Improving Long-Context LLM Inference by Steering Attention on Reused Contexts
- arxiv url: http://arxiv.org/abs/2411.13009v1
- Date: Wed, 20 Nov 2024 03:17:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-21 16:13:13.624750
- Title: LLMSteer: Improving Long-Context LLM Inference by Steering Attention on Reused Contexts
- Title(参考訳): LLMSteer: 再利用コンテキストのステアリングによる長期LLM推論の改善
- Authors: Zhuohan Gu, Jiayi Yao, Kuntai Du, Junchen Jiang,
- Abstract要約: LLMSteerは,クエリに依存しないアテンションステアリングを通じて,大規模言語モデル(LLM)を強化する,微調整不要なフレームワークである。
LLMSteerは人気のあるLLMとデータセットでテストされ、ベースラインでパフォーマンスギャップを65.9%縮小し、実行時の遅延を4.8倍に削減した。
- 参考スコア(独自算出の注目度): 2.0384661785620466
- License:
- Abstract: As large language models (LLMs) show impressive performance on complex tasks, they still struggle with longer contextual understanding and high computational costs. To balance efficiency and quality, we introduce LLMSteer, a fine-tuning-free framework that enhances LLMs through query-independent attention steering. Tested on popular LLMs and datasets, LLMSteer narrows the performance gap with baselines by 65.9% and reduces the runtime delay by up to 4.8x compared to recent attention steering methods.
- Abstract(参考訳): 大規模言語モデル(LLM)は複雑なタスクにおいて印象的なパフォーマンスを示すため、より長い文脈理解と高い計算コストに苦しむ。
効率性と品質のバランスをとるために,クエリ非依存のアテンションステアリングによりLCMを強化する微調整不要なフレームワークであるLLMSteerを導入する。
LLMSteerは人気のあるLLMとデータセットでテストされ、ベースラインによるパフォーマンスギャップを65.9%縮小し、最近のアテンションステアリング手法と比較してランタイム遅延を4.8倍まで削減した。
関連論文リスト
- Why Does the Effective Context Length of LLMs Fall Short? [68.34573617977013]
本稿では,SifTed Rotray 位置埋め込み (STRING) について紹介する。
ストリングは、トレーニング中の元の非効率な位置を上書きするために、よく訓練された位置をシフトし、既存のトレーニング期間内でのパフォーマンスを向上させる。
実験結果から, STRINGは最新の大規模モデルの性能を劇的に向上させることがわかった。
論文 参考訳(メタデータ) (2024-10-24T13:51:50Z) - Understanding the Role of LLMs in Multimodal Evaluation Benchmarks [77.59035801244278]
本稿では,MLLM評価におけるLarge Language Model (LLM)バックボーンの役割について検討する。
本研究は4つのMLLMベンチマークと8つの最先端MLLMベンチマークを含む。
鍵となる発見は、いくつかのベンチマークでは視覚的な入力がなくても高いパフォーマンスを実現しており、最大50%のエラーレートは、LLMバックボーンにおける不十分な世界的知識に起因していることを示している。
論文 参考訳(メタデータ) (2024-10-16T07:49:13Z) - Retrieval Augmented Generation or Long-Context LLMs? A Comprehensive Study and Hybrid Approach [26.02167477129771]
Retrieval Augmented Generation (RAG) は、Large Language Models (LLM) において、過度に長いコンテキストを効率的に処理するための強力なツールである。
RAGとLong-context (LC) LLMを比較し,両者の強みを活用することを目的とした。
本稿では, モデル自己回帰に基づいて, クエリをRAGやLCにルーティングする, 単純かつ効果的な手法であるSelf-Routeを提案する。
論文 参考訳(メタデータ) (2024-07-23T20:51:52Z) - Q*: Improving Multi-step Reasoning for LLMs with Deliberative Planning [53.6472920229013]
大規模言語モデル(LLM)は多くの自然言語タスクにおいて印象的な能力を示している。
LLMは多段階推論を行う際にエラー、幻覚、矛盾する文を生成する傾向がある。
本稿では,LLMの復号化過程を検討計画で導くためのフレームワークであるQ*を紹介する。
論文 参考訳(メタデータ) (2024-06-20T13:08:09Z) - Enhancing Reinforcement Learning with Label-Sensitive Reward for Natural Language Understanding [11.470005425117371]
ラベルセンシティブ・リワード(RLLR)で強化された新しい強化学習フレームワークを提案する。
提案手法は,RL中におけるニュアンス付きラベルセンシティブな意味的特徴を適切に捉え,自然言語の理解を向上させることを目的としている。
8つのタスクにまたがる5つの多様な基礎モデルの実験は、有望な結果を示している。
論文 参考訳(メタデータ) (2024-05-30T07:19:31Z) - Characterization of Large Language Model Development in the Datacenter [55.9909258342639]
大きな言語モデル(LLM)は、いくつかの変換タスクにまたがって素晴らしいパフォーマンスを示している。
しかし,大規模クラスタ資源を効率よく利用してLCMを開発することは容易ではない。
我々は,GPUデータセンタAcmeから収集した6ヶ月のLDM開発ワークロードの詳細な評価を行った。
論文 参考訳(メタデータ) (2024-03-12T13:31:14Z) - OPDAI at SemEval-2024 Task 6: Small LLMs can Accelerate Hallucination
Detection with Weakly Supervised Data [1.3981625092173873]
本稿では,LLMの幻覚検出システムについて述べる。
SemEval-2024 Task 6のモデル非依存トラックで2位を獲得した。
論文 参考訳(メタデータ) (2024-02-20T11:01:39Z) - Enabling Weak LLMs to Judge Response Reliability via Meta Ranking [38.63721941742435]
我々は、$textitMeta Ranking$ (MR) と呼ばれるクロスクエリベースの新しい手法を提案する。
MRは、ターゲットクエリ-レスポンスペアを複数の参照クエリ-レスポンスペアにペアでランク付けすることで、信頼性を評価する。
MRはモデルカスケーディングとインストラクションチューニングの2つの実用的応用において、強力なLLMの性能を向上させることができることを示す。
論文 参考訳(メタデータ) (2024-02-19T13:57:55Z) - LLM Maybe LongLM: Self-Extend LLM Context Window Without Tuning [67.39585115936329]
LLMには、微調整なしで長いコンテキストを処理できる固有の能力がある、と我々は主張する。
バイレベルアテンション情報を構築することで,LLMのコンテキストウィンドウを拡張するためのSelfExtendを提案する。
複数のベンチマークで包括的な実験を行い、その結果、既存のLLMのコンテキストウィンドウ長を効果的に拡張できることが示されている。
論文 参考訳(メタデータ) (2024-01-02T18:30:51Z) - Reflection-Tuning: Data Recycling Improves LLM Instruction-Tuning [79.32236399694077]
トレーニングセットの低品質データは、通常、チューニングのチューニングに有害である。
我々は「反射チューニング」と呼ばれる新しい手法を提案する。
このアプローチでは、オラクルLSMを使用して、データ内の命令や応答の質を検査し、向上することで、元のトレーニングデータをリサイクルする。
論文 参考訳(メタデータ) (2023-10-18T05:13:47Z) - Compresso: Structured Pruning with Collaborative Prompting Learns
Compact Large Language Models [15.471290825100075]
我々はCompressoと呼ばれる大規模言語モデルを構築するための新しいパラダイムを導入する。
提案手法は,資源効率の高いプルーニングアルゴリズムとLLM自体の協調により,学習過程における最適プルーニング決定を学習する。
実験では、Compressoは様々な空間比でワンショットプルーニングベースラインを著しく上回り、それぞれ2.21%、11.43%、7.04%、および4.81%のスコアをコモンセンス推論、読解理解、MMLU、BBHベンチマークで達成している。
論文 参考訳(メタデータ) (2023-10-08T05:16:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。