LLMSteer: Improving Long-Context LLM Inference by Steering Attention on Reused Contexts
- URL: http://arxiv.org/abs/2411.13009v2
- Date: Thu, 21 Nov 2024 16:49:51 GMT
- Title: LLMSteer: Improving Long-Context LLM Inference by Steering Attention on Reused Contexts
- Authors: Zhuohan Gu, Jiayi Yao, Kuntai Du, Junchen Jiang,
- Abstract summary: We introduce LLMSteer, a fine-tuning-free framework that enhances large language models (LLMs) through query-independent attention steering.
Tested on popular LLMs and datasets, LLMSteer narrows the performance gap with baselines by 65.9% and reduces the runtime delay by up to 4.8x.
- Score: 2.0384661785620466
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: As large language models (LLMs) show impressive performance on complex tasks, they still struggle with longer contextual understanding and high computational costs. To balance efficiency and quality, we introduce LLMSteer, a fine-tuning-free framework that enhances LLMs through query-independent attention steering. Tested on popular LLMs and datasets, LLMSteer narrows the performance gap with baselines by 65.9% and reduces the runtime delay by up to 4.8x compared to recent attention steering methods.
Related papers
- Confident or Seek Stronger: Exploring Uncertainty-Based On-device LLM Routing From Benchmarking to Generalization [61.02719787737867]
Large language models (LLMs) are increasingly deployed and democratized on edge devices.
One promising solution is uncertainty-based SLM routing, offloading high-stakes queries to stronger LLMs when resulting in low-confidence responses on SLM.
We conduct a comprehensive investigation into benchmarking and generalization of uncertainty-driven routing strategies from SLMs to LLMs over 1500+ settings.
arXiv Detail & Related papers (2025-02-06T18:59:11Z) - LLM2: Let Large Language Models Harness System 2 Reasoning [65.89293674479907]
Large language models (LLMs) have exhibited impressive capabilities across a myriad of tasks, yet they occasionally yield undesirable outputs.
We introduce LLM2, a novel framework that combines an LLM with a process-based verifier.
LLMs2 is responsible for generating plausible candidates, while the verifier provides timely process-based feedback to distinguish desirable and undesirable outputs.
arXiv Detail & Related papers (2024-12-29T06:32:36Z) - Systematic Evaluation of Long-Context LLMs on Financial Concepts [4.299993837670688]
We evaluate the performance of state-of-the-art GPT-4 suite of LC LLMs in solving progressively challenging tasks.
Our findings indicate that LC LLMs exhibit brittleness at longer context lengths even for simple tasks.
arXiv Detail & Related papers (2024-12-19T20:26:55Z) - Why Does the Effective Context Length of LLMs Fall Short? [68.34573617977013]
In this work, we introduce ShifTed Rotray position embeddING (STRING)
STRING shifts well-trained positions to overwrite the original ineffective positions during inference, enhancing performance within their existing training lengths.
Experimental results show that STRING dramatically improves the performance of the latest large-scale models.
arXiv Detail & Related papers (2024-10-24T13:51:50Z) - Understanding the Role of LLMs in Multimodal Evaluation Benchmarks [77.59035801244278]
This paper investigates the role of the Large Language Model (LLM) backbone in Multimodal Large Language Models (MLLMs) evaluation.
Our study encompasses four diverse MLLM benchmarks and eight state-of-the-art MLLMs.
Key findings reveal that some benchmarks allow high performance even without visual inputs and up to 50% of error rates can be attributed to insufficient world knowledge in the LLM backbone.
arXiv Detail & Related papers (2024-10-16T07:49:13Z) - Retrieval Augmented Generation or Long-Context LLMs? A Comprehensive Study and Hybrid Approach [26.02167477129771]
Retrieval Augmented Generation (RAG) has been a powerful tool for Large Language Models (LLMs) to efficiently process overly lengthy contexts.
We compare RAG and long-context (LC) LLMs, aiming to leverage the strengths of both.
We propose Self-Route, a simple yet effective method that routes queries to RAG or LC based on model self-reflection.
arXiv Detail & Related papers (2024-07-23T20:51:52Z) - Enhancing Reinforcement Learning with Label-Sensitive Reward for Natural Language Understanding [11.470005425117371]
We propose a novel Reinforcement Learning framework enhanced with Label-sensitive Reward (RLLR)
Our method aims to adeptly capture nuanced label-sensitive semantic features during RL, thereby enhancing natural language understanding.
Experiments conducted on five diverse foundation models across eight tasks showcase promising results.
arXiv Detail & Related papers (2024-05-30T07:19:31Z) - Improve Temporal Awareness of LLMs for Sequential Recommendation [61.723928508200196]
Large language models (LLMs) have demonstrated impressive zero-shot abilities in solving a wide range of general-purpose tasks.
LLMs fall short in recognizing and utilizing temporal information, rendering poor performance in tasks that require an understanding of sequential data.
We propose three prompting strategies to exploit temporal information within historical interactions for LLM-based sequential recommendation.
arXiv Detail & Related papers (2024-05-05T00:21:26Z) - Characterization of Large Language Model Development in the Datacenter [55.9909258342639]
Large Language Models (LLMs) have presented impressive performance across several transformative tasks.
However, it is non-trivial to efficiently utilize large-scale cluster resources to develop LLMs.
We present an in-depth characterization study of a six-month LLM development workload trace collected from our GPU datacenter Acme.
arXiv Detail & Related papers (2024-03-12T13:31:14Z) - OPDAI at SemEval-2024 Task 6: Small LLMs can Accelerate Hallucination
Detection with Weakly Supervised Data [1.3981625092173873]
This paper describes a unified system for hallucination detection of LLMs.
It wins the second prize in the model-agnostic track of the SemEval-2024 Task 6.
arXiv Detail & Related papers (2024-02-20T11:01:39Z) - Enabling Weak LLMs to Judge Response Reliability via Meta Ranking [38.63721941742435]
We propose a novel cross-query-comparison-based method called $textitMeta Ranking$ (MR)
MR assesses reliability by pairwisely ranking the target query-response pair with multiple reference query-response pairs.
We show that MR can enhance strong LLMs' performance in two practical applications: model cascading and instruction tuning.
arXiv Detail & Related papers (2024-02-19T13:57:55Z) - LLM Maybe LongLM: Self-Extend LLM Context Window Without Tuning [67.39585115936329]
We argue that LLMs have inherent capabilities to handle long contexts without fine-tuning.
We propose SelfExtend to extend the context window of LLMs by constructing bi-level attention information.
We conduct comprehensive experiments on multiple benchmarks and the results show that our SelfExtend can effectively extend existing LLMs' context window length.
arXiv Detail & Related papers (2024-01-02T18:30:51Z) - Reflection-Tuning: Data Recycling Improves LLM Instruction-Tuning [79.32236399694077]
Low-quality data in the training set are usually detrimental to instruction tuning.
We propose a novel method, termed "reflection-tuning"
This approach utilizes an oracle LLM to recycle the original training data by introspecting and enhancing the quality of instructions and responses in the data.
arXiv Detail & Related papers (2023-10-18T05:13:47Z) - Compresso: Structured Pruning with Collaborative Prompting Learns
Compact Large Language Models [15.471290825100075]
We introduce a new paradigm for structurally pruning Large Language Models, called Compresso.
Our approach, through the collaboration of the proposed resource-efficient pruning algorithm and the LLM itself, learns optimal pruning decisions during the training process.
In experiments, Compresso significantly outperforms one-shot pruning baselines across various sparsity ratios, achieving up to 2.21%, 11.43%, 7.04%, and 4.81% higher scores on the commonsense reasoning, reading comprehension, MMLU, and BBH benchmarks, respectively.
arXiv Detail & Related papers (2023-10-08T05:16:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.