Virtual Staining of Label-Free Tissue in Imaging Mass Spectrometry
- URL: http://arxiv.org/abs/2411.13120v1
- Date: Wed, 20 Nov 2024 08:30:11 GMT
- Title: Virtual Staining of Label-Free Tissue in Imaging Mass Spectrometry
- Authors: Yijie Zhang, Luzhe Huang, Nir Pillar, Yuzhu Li, Lukasz G. Migas, Raf Van de Plas, Jeffrey M. Spraggins, Aydogan Ozcan,
- Abstract summary: We present a virtual histological staining approach that enhances spatial resolution and introduces cellular morphological contrast into mass spectrometry images.
Blind testing on human kidney tissue demonstrated that the virtually stained images of label-free samples closely match their histochemically stained counterparts.
- Score: 2.6165589247047465
- License:
- Abstract: Imaging mass spectrometry (IMS) is a powerful tool for untargeted, highly multiplexed molecular mapping of tissue in biomedical research. IMS offers a means of mapping the spatial distributions of molecular species in biological tissue with unparalleled chemical specificity and sensitivity. However, most IMS platforms are not able to achieve microscopy-level spatial resolution and lack cellular morphological contrast, necessitating subsequent histochemical staining, microscopic imaging and advanced image registration steps to enable molecular distributions to be linked to specific tissue features and cell types. Here, we present a virtual histological staining approach that enhances spatial resolution and digitally introduces cellular morphological contrast into mass spectrometry images of label-free human tissue using a diffusion model. Blind testing on human kidney tissue demonstrated that the virtually stained images of label-free samples closely match their histochemically stained counterparts (with Periodic Acid-Schiff staining), showing high concordance in identifying key renal pathology structures despite utilizing IMS data with 10-fold larger pixel size. Additionally, our approach employs an optimized noise sampling technique during the diffusion model's inference process to reduce variance in the generated images, yielding reliable and repeatable virtual staining. We believe this virtual staining method will significantly expand the applicability of IMS in life sciences and open new avenues for mass spectrometry-based biomedical research.
Related papers
- Super-resolved virtual staining of label-free tissue using diffusion models [2.8661150986074384]
This study presents a diffusion model-based super-resolution virtual staining approach utilizing a Brownian bridge process.
Our approach integrates novel sampling techniques into a diffusion model-based image inference process.
Blindly applied to lower-resolution auto-fluorescence images of label-free human lung tissue samples, the diffusion-based super-resolution virtual staining model consistently outperformed conventional approaches in resolution, structural similarity and perceptual accuracy.
arXiv Detail & Related papers (2024-10-26T04:31:17Z) - Single color digital H&E staining with In-and-Out Net [0.8271394038014485]
This paper introduces a novel network, In-and-Out Net, specifically designed for virtual staining tasks.
Based on Generative Adversarial Networks (GAN), our model efficiently transforms Reflectance Confocal Microscopy (RCM) images into Hematoxylin and Eosin stained images.
arXiv Detail & Related papers (2024-05-22T01:17:27Z) - Super-resolution of biomedical volumes with 2D supervision [84.5255884646906]
Masked slice diffusion for super-resolution exploits the inherent equivalence in the data-generating distribution across all spatial dimensions of biological specimens.
We focus on the application of SliceR to stimulated histology (SRH), characterized by its rapid acquisition of high-resolution 2D images but slow and costly optical z-sectioning.
arXiv Detail & Related papers (2024-04-15T02:41:55Z) - Rapid hyperspectral photothermal mid-infrared spectroscopic imaging from
sparse data for gynecologic cancer tissue subtyping [3.550171634694342]
Mid-infrared (MIR) hyperspectral photothermal imaging is a label-free, biochemically quantitative technology.
This work presents a novel approach to MIR photothermal imaging that enhances its speed by an order of magnitude.
arXiv Detail & Related papers (2024-02-28T00:57:35Z) - Style transfer between Microscopy and Magnetic Resonance Imaging via
Generative Adversarial Network in small sample size settings [49.84018914962972]
Cross-modal augmentation of Magnetic Resonance Imaging (MRI) and microscopic imaging based on the same tissue samples is promising.
We tested a method for generating microscopic histological images from MRI scans of the corpus callosum using conditional generative adversarial network (cGAN) architecture.
arXiv Detail & Related papers (2023-10-16T13:58:53Z) - Unpaired Image-to-Image Translation with Limited Data to Reveal Subtle
Phenotypes [0.5076419064097732]
We present an improved CycleGAN architecture that employs self-supervised discriminators to alleviate the need for numerous images.
We also provide results obtained with small biological datasets on obvious and non-obvious cell phenotype variations.
arXiv Detail & Related papers (2023-01-21T16:25:04Z) - Evaluation of the potential of Near Infrared Hyperspectral Imaging for
monitoring the invasive brown marmorated stink bug [53.682955739083056]
The brown marmorated stink bug (BMSB), Halyomorpha halys, is an invasive insect pest of global importance that damages several crops.
The present study consists in a preliminary evaluation at the laboratory level of Near Infrared Hyperspectral Imaging (NIR-HSI) as a possible technology to detect BMSB specimens.
arXiv Detail & Related papers (2023-01-19T11:37:20Z) - A Self-attention Guided Multi-scale Gradient GAN for Diversified X-ray
Image Synthesis [0.6308539010172307]
Generative Adversarial Networks (GANs) are utilized to address the data limitation problem via the generation of synthetic images.
Training challenges such as mode collapse, non-convergence, and instability degrade a GAN's performance in synthesizing diversified and high-quality images.
This work proposes an attention-guided multi-scale gradient GAN architecture to model the relationship between long-range dependencies of biomedical image features.
arXiv Detail & Related papers (2022-10-09T13:17:17Z) - Lymphocyte Classification in Hyperspectral Images of Ovarian Cancer
Tissue Biopsy Samples [94.37521840642141]
We present a machine learning pipeline to segment white blood cell pixels in hyperspectral images of biopsy cores.
These cells are clinically important for diagnosis, but some prior work has struggled to incorporate them due to difficulty obtaining precise pixel labels.
arXiv Detail & Related papers (2022-03-23T00:58:27Z) - Texture Characterization of Histopathologic Images Using Ecological
Diversity Measures and Discrete Wavelet Transform [82.53597363161228]
This paper proposes a method for characterizing texture across histopathologic images with a considerable success rate.
It is possible to quantify the intrinsic properties of such images with promising accuracy on two HI datasets.
arXiv Detail & Related papers (2022-02-27T02:19:09Z) - Hyperspectral-Multispectral Image Fusion with Weighted LASSO [68.04032419397677]
We propose an approach for fusing hyperspectral and multispectral images to provide high-quality hyperspectral output.
We demonstrate that the proposed sparse fusion and reconstruction provides quantitatively superior results when compared to existing methods on publicly available images.
arXiv Detail & Related papers (2020-03-15T23:07:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.