Combining Autoregressive and Autoencoder Language Models for Text Classification
- URL: http://arxiv.org/abs/2411.13282v1
- Date: Wed, 20 Nov 2024 12:49:42 GMT
- Title: Combining Autoregressive and Autoencoder Language Models for Text Classification
- Authors: João Gonçalves,
- Abstract summary: CAALM-TC is a novel method that enhances text classification by integrating autoregressive and autoencoder language models.
Experimental results on four benchmark datasets demonstrate that CAALM consistently outperforms existing methods.
- Score: 1.0878040851638
- License:
- Abstract: This paper presents CAALM-TC (Combining Autoregressive and Autoencoder Language Models for Text Classification), a novel method that enhances text classification by integrating autoregressive and autoencoder language models. Autoregressive large language models such as Open AI's GPT, Meta's Llama or Microsoft's Phi offer promising prospects for content analysis practitioners, but they generally underperform supervised BERT based models for text classification. CAALM leverages autoregressive models to generate contextual information based on input texts, which is then combined with the original text and fed into an autoencoder model for classification. This hybrid approach capitalizes on the extensive contextual knowledge of autoregressive models and the efficient classification capabilities of autoencoders. Experimental results on four benchmark datasets demonstrate that CAALM consistently outperforms existing methods, particularly in tasks with smaller datasets and more abstract classification objectives. The findings indicate that CAALM offers a scalable and effective solution for automated content analysis in social science research that minimizes sample size requirements.
Related papers
- Matchmaker: Self-Improving Large Language Model Programs for Schema Matching [60.23571456538149]
We propose a compositional language model program for schema matching, comprised of candidate generation, refinement and confidence scoring.
Matchmaker self-improves in a zero-shot manner without the need for labeled demonstrations.
Empirically, we demonstrate on real-world medical schema matching benchmarks that Matchmaker outperforms previous ML-based approaches.
arXiv Detail & Related papers (2024-10-31T16:34:03Z) - Assessment of Transformer-Based Encoder-Decoder Model for Human-Like Summarization [0.05852077003870416]
This work leverages transformer-based BART model for human-like summarization.
On training and fine-tuning the encoder-decoder model, it is tested with diverse sample articles.
The finetuned model performance is compared with the baseline pretrained model.
Empirical results on BBC News articles highlight that the gold standard summaries written by humans are more factually consistent by 17%.
arXiv Detail & Related papers (2024-10-22T09:25:04Z) - Are Large Language Models Good Classifiers? A Study on Edit Intent Classification in Scientific Document Revisions [62.12545440385489]
Large language models (LLMs) have brought substantial advancements in text generation, but their potential for enhancing classification tasks remains underexplored.
We propose a framework for thoroughly investigating fine-tuning LLMs for classification, including both generation- and encoding-based approaches.
We instantiate this framework in edit intent classification (EIC), a challenging and underexplored classification task.
arXiv Detail & Related papers (2024-10-02T20:48:28Z) - Diffusion Guided Language Modeling [28.819061884362792]
For many applications it is desirable to control attributes, such as sentiment, of the generated language.
For auto-regressive language models, existing guidance methods are prone to decoding errors that cascade during generation and degrade performance.
In this paper we use a guided diffusion model to produce a latent proposal that steers an auto-regressive language model to generate text with desired properties.
arXiv Detail & Related papers (2024-08-08T05:06:22Z) - Long-Span Question-Answering: Automatic Question Generation and QA-System Ranking via Side-by-Side Evaluation [65.16137964758612]
We explore the use of long-context capabilities in large language models to create synthetic reading comprehension data from entire books.
Our objective is to test the capabilities of LLMs to analyze, understand, and reason over problems that require a detailed comprehension of long spans of text.
arXiv Detail & Related papers (2024-05-31T20:15:10Z) - CELA: Cost-Efficient Language Model Alignment for CTR Prediction [71.85120354973073]
Click-Through Rate (CTR) prediction holds a paramount position in recommender systems.
Recent efforts have sought to mitigate these challenges by integrating Pre-trained Language Models (PLMs)
We propose textbfCost-textbfEfficient textbfLanguage Model textbfAlignment (textbfCELA) for CTR prediction.
arXiv Detail & Related papers (2024-05-17T07:43:25Z) - Empowering Interdisciplinary Research with BERT-Based Models: An Approach Through SciBERT-CNN with Topic Modeling [0.0]
This paper introduces a novel approach using the SciBERT model and CNNs to systematically categorize academic abstracts.
The CNN uses convolution and pooling to enhance feature extraction and reduce dimensionality.
arXiv Detail & Related papers (2024-04-16T05:21:47Z) - HiGen: Hierarchy-Aware Sequence Generation for Hierarchical Text
Classification [19.12354692458442]
Hierarchical text classification (HTC) is a complex subtask under multi-label text classification.
We propose HiGen, a text-generation-based framework utilizing language models to encode dynamic text representations.
arXiv Detail & Related papers (2024-01-24T04:44:42Z) - The Devil is in the Errors: Leveraging Large Language Models for
Fine-grained Machine Translation Evaluation [93.01964988474755]
AutoMQM is a prompting technique which asks large language models to identify and categorize errors in translations.
We study the impact of labeled data through in-context learning and finetuning.
We then evaluate AutoMQM with PaLM-2 models, and we find that it improves performance compared to just prompting for scores.
arXiv Detail & Related papers (2023-08-14T17:17:21Z) - Zero-Shot Text Classification via Self-Supervised Tuning [46.9902502503747]
We propose a new paradigm based on self-supervised learning to solve zero-shot text classification tasks.
tuning the language models with unlabeled data, called self-supervised tuning.
Our model outperforms the state-of-the-art baselines on 7 out of 10 tasks.
arXiv Detail & Related papers (2023-05-19T05:47:33Z) - Non-Autoregressive Translation by Learning Target Categorical Codes [59.840510037250944]
We propose CNAT, which learns implicitly categorical codes as latent variables into the non-autoregressive decoding.
Experiment results show that our model achieves comparable or better performance in machine translation tasks.
arXiv Detail & Related papers (2021-03-21T14:12:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.