論文の概要: Degenerate quantum erasure decoding
- arxiv url: http://arxiv.org/abs/2411.13509v2
- Date: Sat, 29 Mar 2025 09:59:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-01 14:27:56.193741
- Title: Degenerate quantum erasure decoding
- Title(参考訳): 退化量子消去復号法
- Authors: Kao-Yueh Kuo, Yingkai Ouyang,
- Abstract要約: 消去は、漏洩エラーに支配される物理システムにおける主要なタイプのエラーである。
我々は,最大自由度復号法(MLD)の下での量子符号の消去能力を示す。
本稿では,線形時間で動作し,安定化器符号の誤り縮退を利用した信念伝搬(BP)デコーダを提案する。
- 参考スコア(独自算出の注目度): 7.6119527195998025
- License:
- Abstract: Erasures are the primary type of errors in physical systems dominated by leakage errors. While quantum error correction (QEC) using stabilizer codes can combat erasure errors, it remains unknown which constructions achieve capacity performance. If such codes exist, decoders with linear runtime in the code length are also desired. In this paper, we present erasure capacity-achieving quantum codes under maximum-likelihood decoding (MLD), though MLD requires cubic runtime in the code length. For QEC, using an accurate decoder with the shortest possible runtime will minimize the degradation of quantum information while awaiting the decoder's decision. To address this, we propose belief propagation (BP) decoders that run in linear time and exploit error degeneracy in stabilizer codes, achieving capacity or near-capacity performance for a broad class of codes, including bicycle codes, product codes, and topological codes. We furthermore explore the potential of our BP decoders to handle mixed erasure and depolarizing errors, and also local deletion errors via concatenation with permutation invariant codes.
- Abstract(参考訳): 消去は、漏洩エラーに支配される物理システムにおける主要なタイプのエラーである。
安定化器符号を用いた量子誤り訂正(QEC)は消去誤差と闘うことができるが、どの構造がキャパシティ性能を達成するかは不明である。
このようなコードが存在する場合、コード長に線形ランタイムを持つデコーダも必要である。
本稿では,MLDがコード長の立方体ランタイムを必要とするにもかかわらず,MLD(Max-likelihood decoding)の下での量子符号の消去能力を示す。
QECでは、最小限のランタイムを持つ正確なデコーダを使用することで、デコーダの決定を待つ間、量子情報の劣化を最小限に抑えることができる。
そこで本稿では, 自転車コード, 製品コード, トポロジコードなど, 幅広い種類のコードに対して, 線形時間で動作し, 安定化器符号の誤りデジェネリシーを利用する信念伝播デコーダを提案する。
さらに、BPデコーダが混合消去および脱分極エラーに対処する可能性や、置換不変コードとの結合による局所削除エラーについても検討する。
関連論文リスト
- Breadth-first graph traversal union-find decoder [0.0]
我々はその実装を単純化し、潜在的な復号速度の利点を提供するUnion-findデコーダの変種を開発する。
これらの手法が、非トポロジカル量子低密度パリティチェック符号のデコードにどのように適用できるかを示す。
論文 参考訳(メタデータ) (2024-07-22T18:54:45Z) - Advantage of Quantum Neural Networks as Quantum Information Decoders [1.1842028647407803]
位相安定化器ハミルトンの基底空間に符号化された量子情報の復号化問題について検討する。
まず、標準安定化器に基づく誤り訂正と復号化方式が、そのような量子符号において適切に摂動可能であることを証明した。
次に、量子ニューラルネットワーク(QNN)デコーダが読み出し誤差をほぼ2次的に改善することを証明する。
論文 参考訳(メタデータ) (2024-01-11T23:56:29Z) - Testing the Accuracy of Surface Code Decoders [55.616364225463066]
大規模でフォールトトレラントな量子計算は量子エラー訂正符号(QECC)によって実現される
本研究は,QECC復号方式の精度と有効性をテストするための最初の体系的手法である。
論文 参考訳(メタデータ) (2023-11-21T10:22:08Z) - Improved Noisy Syndrome Decoding of Quantum LDPC Codes with Sliding
Window [0.0]
本研究では,過去の症候群計測ラウンドの誤差を補正するスライディングウインドウ復号法について検討した。
注目すべきは、この改善がデコーディングの複雑さを大きくするコストを伴わないことだ。
論文 参考訳(メタデータ) (2023-11-06T17:56:49Z) - The END: An Equivariant Neural Decoder for Quantum Error Correction [73.4384623973809]
データ効率のよいニューラルデコーダを導入し、この問題の対称性を活用する。
本稿では,従来のニューラルデコーダに比べて精度の高い新しい同変アーキテクチャを提案する。
論文 参考訳(メタデータ) (2023-04-14T19:46:39Z) - Modular decoding: parallelizable real-time decoding for quantum
computers [55.41644538483948]
リアルタイム量子計算は、ノイズの多い量子ハードウェアによって生成されたデータのストリームから論理的な結果を取り出すことができる復号アルゴリズムを必要とする。
本稿では,デコーディングの精度を犠牲にすることなく,最小限の追加通信でこの問題に対処できるモジュールデコーディングを提案する。
本稿では,格子探索型耐故障ブロックのモジュールデコーディングの具体例であるエッジ頂点分解について紹介する。
論文 参考訳(メタデータ) (2023-03-08T19:26:10Z) - Deep Quantum Error Correction [73.54643419792453]
量子誤り訂正符号(QECC)は、量子コンピューティングのポテンシャルを実現するための鍵となる要素である。
本研究では,新しいエンペンド・ツー・エンドの量子誤りデコーダを効率的に訓練する。
提案手法は,最先端の精度を実現することにより,QECCのニューラルデコーダのパワーを実証する。
論文 参考訳(メタデータ) (2023-01-27T08:16:26Z) - Improved decoding of circuit noise and fragile boundaries of tailored
surface codes [61.411482146110984]
高速かつ高精度なデコーダを導入し、幅広い種類の量子誤り訂正符号で使用することができる。
我々のデコーダは、信仰マッチングと信念フィンドと呼ばれ、すべてのノイズ情報を活用し、QECの高精度なデモを解き放つ。
このデコーダは, 標準の正方形曲面符号に対して, 整形曲面符号において, より高いしきい値と低い量子ビットオーバーヘッドをもたらすことがわかった。
論文 参考訳(メタデータ) (2022-03-09T18:48:54Z) - Performance of teleportation-based error correction circuits for bosonic
codes with noisy measurements [58.720142291102135]
テレポーテーションに基づく誤り訂正回路を用いて、回転対称符号の誤り訂正能力を解析する。
マイクロ波光学における現在達成可能な測定効率により, ボソニック回転符号の破壊ポテンシャルは著しく低下することが判明した。
論文 参考訳(メタデータ) (2021-08-02T16:12:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。