論文の概要: Translating Electrocardiograms to Cardiac Magnetic Resonance Imaging Useful for Cardiac Assessment and Disease Screening: A Multi-Center Study AI for ECG to CMR Translation Study
- arxiv url: http://arxiv.org/abs/2411.13602v2
- Date: Thu, 15 May 2025 05:56:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-16 14:06:35.633153
- Title: Translating Electrocardiograms to Cardiac Magnetic Resonance Imaging Useful for Cardiac Assessment and Disease Screening: A Multi-Center Study AI for ECG to CMR Translation Study
- Title(参考訳): 心電図から心臓磁気共鳴画像への変換 : 心電図から心磁図への変換研究のための多施設共同研究
- Authors: Zhengyao Ding, Ziyu Li, Yujian Hu, Youyao Xu, Chengchen Zhao, Yiheng Mao, Haitao Li, Zhikang Li, Qian Li, Jing Wang, Yue Chen, Mengjia Chen, Longbo Wang, Xuesen Chu, Weichao Pan, Ziyi Liu, Fei Wu, Hongkun Zhang, Ting Chen, Zhengxing Huang,
- Abstract要約: 心臓血管疾患(CVD)は世界的な死亡の原因であり、アクセス可能で正確な診断ツールを必要とする。
12個の心電図信号をCMRレベルの機能パラメータと合成画像に変換するディープラーニングフレームワークであるCardioNetsを提案する。
読者の研究では、ECGのみのCardioNetsは、ECGと実際のCMRの両方を用いて、人間の医師よりも13.9%高い精度を達成した。
- 参考スコア(独自算出の注目度): 30.84196213860778
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Cardiovascular diseases (CVDs) are the leading cause of global mortality, necessitating accessible and accurate diagnostic tools. While cardiac magnetic resonance imaging (CMR) provides gold-standard insights into cardiac structure and function, its clinical utility is limited by high cost and complexity. In contrast, electrocardiography (ECG) is inexpensive and widely available but lacks the granularity of CMR. We propose CardioNets, a deep learning framework that translates 12-lead ECG signals into CMR-level functional parameters and synthetic images, enabling scalable cardiac assessment. CardioNets integrates cross-modal contrastive learning and generative pretraining, aligning ECG with CMR-derived cardiac phenotypes and synthesizing high-resolution CMR images via a masked autoregressive model. Trained on 159,819 samples from five cohorts, including the UK Biobank (n=42,483) and MIMIC-IV-ECG (n=164,550), and externally validated on independent clinical datasets (n=3,767), CardioNets achieved strong performance across disease screening and phenotype estimation tasks. In the UK Biobank, it improved cardiac phenotype regression R2 by 24.8% and cardiomyopathy AUC by up to 39.3% over baseline models. In MIMIC, it increased AUC for pulmonary hypertension detection by 5.6%. Generated CMR images showed 36.6% higher SSIM and 8.7% higher PSNR than prior approaches. In a reader study, ECG-only CardioNets achieved 13.9% higher accuracy than human physicians using both ECG and real CMR. These results suggest that CardioNets offers a promising, low-cost alternative to CMR for large-scale CVD screening, particularly in resource-limited settings. Future efforts will focus on clinical deployment and regulatory validation of ECG-based synthetic imaging.
- Abstract(参考訳): 心臓血管疾患(CVD)は世界的な死亡の原因であり、アクセス可能で正確な診断ツールを必要とする。
心臓磁気共鳴イメージング(CMR)は、心臓の構造と機能に関するゴールドスタンダードの洞察を提供するが、その臨床的有用性は、コストと複雑さによって制限される。
対照的に、心電図(ECG)は安価で広く利用可能であるが、CMRの粒度は乏しい。
12個の心電図信号をCMRレベルの機能パラメータや合成画像に変換するディープラーニングフレームワークであるCardioNetsを提案する。
CardioNetsは、クロスモーダルコントラスト学習と生成前訓練を統合し、ECGをCMR由来の心臓表現型と整列させ、マスク付き自己回帰モデルを介して高分解能CMR画像を合成する。
英国バイオバンク(n=42,483)やMIMIC-IV-ECG(n=164,550)を含む5つのコホートから159,819個のサンプルをトレーニングし、独立した臨床データセット(n=3,767)で外部から検証した。
イギリス・バイオバンクでは、心臓表現型回帰R2を24.8%改善し、心筋症AUCを39.3%改善した。
MIMICでは、肺高血圧検出のためのAUCを5.6%増加させた。
生成したCMR画像では、SSIMが36.6%、PSNRが8.7%高かった。
読者の研究では、ECGのみのCardioNetsは、ECGと実際のCMRの両方を用いて、人間の医師よりも13.9%高い精度を達成した。
これらの結果は,CardioNetsが大規模CVDスクリーニング,特にリソース制限設定において,CMRに代わる有望で低コストな代替手段を提供していることを示唆している。
今後は、心電図に基づく合成画像の臨床展開と規制の検証に焦点をあてる。
関連論文リスト
- Integrating Deep Learning with Fundus and Optical Coherence Tomography for Cardiovascular Disease Prediction [47.7045293755736]
心血管疾患(CVD)のリスクのある患者の早期発見は、効果的な予防ケア、医療負担の軽減、患者の生活の質の向上に不可欠である。
本研究は、網膜光コヒーレンス断層撮影(OCT)と眼底写真との併用による、将来の心疾患の特定の可能性を示すものである。
そこで我々は,MCVAE(Multi- Channel Variational Autoencoder)に基づく新たなバイナリ分類ネットワークを提案し,患者の眼底画像とOCT画像の潜伏埋め込みを学習し,個人を将来CVDを発症する可能性のあるものとそうでないものとの2つのグループに分類する。
論文 参考訳(メタデータ) (2024-10-18T12:37:51Z) - Self-supervised inter-intra period-aware ECG representation learning for detecting atrial fibrillation [41.82319894067087]
そこで本研究では,周期型ECG表現学習手法を提案する。
心房細動患者の心電図ではRR間隔の不規則性やP波の欠如を考慮し, 経時的および経時的表現のための特定の事前訓練タスクを開発する。
本手法は,発作/持続性心房細動検出のためのBTCHデータセット,textiti., 0.953/0.996におけるAUCの顕著な性能を示す。
論文 参考訳(メタデータ) (2024-10-08T10:03:52Z) - Estimation of Cardiac and Non-cardiac Diagnosis from Electrocardiogram Features [1.068128849363198]
我々は、ECGの特徴から一般的な診断条件を推測する可能性を検討するために、利用可能なデータセットを用いている。
我々は、心電図の特徴と基本的な人口統計特性に基づいて、ツリーベースモデル(XGBoost)を訓練し、広範囲の診断を推定する。
論文 参考訳(メタデータ) (2024-08-30T14:42:03Z) - CNN Based Detection of Cardiovascular Diseases from ECG Images [0.0]
このモデルはInceptionV3アーキテクチャを使って構築され、転送学習によって最適化された。
開発されたモデルでは、MIや他の心血管疾患を93.27%の精度で検出することに成功した。
論文 参考訳(メタデータ) (2024-08-29T11:26:07Z) - Cardiac Copilot: Automatic Probe Guidance for Echocardiography with World Model [66.35766658717205]
心臓の複雑な構造と重要な手術上の課題のため、経験豊富なソノグラフィーが不足している。
本稿では,リアルタイムなプローブ移動誘導が可能なCardiac Copilotシステムを提案する。
中心となるイノベーションは、心臓の空間構造を表現するためのデータ駆動の世界モデル、Cardiac Dreamerの提案である。
実世界の超音波データとそれに対応するプローブの動きを,3人のソノグラフィーによる151Kサンプル対を用いた110の定期的な臨床スキャンからトレーニングする。
論文 参考訳(メタデータ) (2024-06-19T02:42:29Z) - MEIT: Multi-Modal Electrocardiogram Instruction Tuning on Large Language Models for Report Generation [41.324530807795256]
心電図(Electrocardiogram、ECG)は、心臓の状態をモニタリングするための主要な非侵襲的診断ツールである。
最近の研究は心電図データを用いた心臓状態の分類に集中しているが、心電図レポートの生成は見落としている。
LLMとマルチモーダル命令を用いてECGレポート生成に取り組む最初の試みであるMultimodal ECG Instruction Tuning (MEIT) フレームワークを提案する。
論文 参考訳(メタデータ) (2024-03-07T23:20:56Z) - Unlocking the Diagnostic Potential of ECG through Knowledge Transfer
from Cardiac MRI [6.257859765229826]
本稿では,CMR画像からECG埋め込みへドメイン固有情報を転送する,自己監督型コントラスト手法を提案する。
本手法は,マルチモーダルコントラスト学習とマスク付きデータモデリングを組み合わせることで,心電図データのみから全体的心臓検診を可能にする。
論文 参考訳(メタデータ) (2023-08-09T10:05:11Z) - Analysis of Digitalized ECG Signals Based on Artificial Intelligence and
Spectral Analysis Methods Specialized in ARVC [0.0]
不整脈性右室心筋症(英: arrhythmogenic right ventricular cardiomyopathy、ARVC)は、患者の2年目から4年目に発症する遺伝性心筋疾患である。
心電図(ECGs)に基づくこの疾患の有効かつ時間的診断は、早期の心血管死の減少に重要な役割を担っている。
論文 参考訳(メタデータ) (2022-02-28T13:12:50Z) - MyoPS: A Benchmark of Myocardial Pathology Segmentation Combining
Three-Sequence Cardiac Magnetic Resonance Images [84.02849948202116]
本研究は,MyoPS(MyoPS)の医療画像解析における新たな課題を定義するものである。
myoPSは、MICCAI 2020とともにMyoPSチャレンジで最初に提案された3シーケンスの心臓磁気共鳴(CMR)画像を組み合わせている。
この課題は45対のCMR画像と予め整列されたCMR画像を提供し、アルゴリズムは3つのCMRシーケンスから補完的な情報を結合して病理領域を分割することを可能にする。
論文 参考訳(メタデータ) (2022-01-10T06:37:23Z) - A Novel Transfer Learning-Based Approach for Screening Pre-existing
Heart Diseases Using Synchronized ECG Signals and Heart Sounds [0.5621251909851629]
心臓疾患の早期診断は, 肺高血圧, 心臓リズム障害, 血栓, 心不全, 突然の心停止などの合併症を予防するために重要である。
このような疾患を識別するために、心電図(PCG)および心電図(ECG)波形は重要な情報を伝達する。
本稿では,PCGとECGを同時取得したPhystoNet Challenge 2016データセットのサブセットを用いて,この仮説を評価する。
我々の新しいDual-Convolutional Neural Networkベースのアプローチは、トランスファーラーニングを使用して、一般公開されているPCGとECGの同時データ量に制限のある問題に対処する。
論文 参考訳(メタデータ) (2021-02-02T19:51:12Z) - Identification of Ischemic Heart Disease by using machine learning
technique based on parameters measuring Heart Rate Variability [50.591267188664666]
本研究は,243名の非侵襲的特徴(年齢,性別,左室容積率,HRV15)を用いて,一連のANNの訓練と評価を行った。
最高の結果は、7つの入力パラメータと7つの隠れノードを使用して、トレーニングと検証データセットに対して98.9%と82%の精度で得られた。
論文 参考訳(メタデータ) (2020-10-29T19:14:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。