論文の概要: Security by Design Issues in Autonomous Vehicles
- arxiv url: http://arxiv.org/abs/2501.04104v1
- Date: Tue, 07 Jan 2025 19:24:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-09 14:54:36.459253
- Title: Security by Design Issues in Autonomous Vehicles
- Title(参考訳): 自動運転車における設計上の課題によるセキュリティ
- Authors: Martin Higgins, Devki Jha, David Blundell, David Wallom,
- Abstract要約: この研究は、AVのコンテキストにおいて、物理的、サイバー、コーディング、コミュニケーションの各側面にまたがる多様なセキュリティレイヤの概要を概説する。
我々は、潜在的な攻撃ベクトルに対する潜在的な解決策に関する洞察を提供し、自動運転車が進化する脅威の風景の中で安全でレジリエントであることを保証する。
- 参考スコア(独自算出の注目度): 0.7999703756441756
- License:
- Abstract: As autonomous vehicle (AV) technology advances towards maturity, it becomes imperative to examine the security vulnerabilities within these cyber-physical systems. While conventional cyber-security concerns are often at the forefront of discussions, it is essential to get deeper into the various layers of vulnerability that are often overlooked within mainstream frameworks. Our goal is to spotlight imminent challenges faced by AV operators and explore emerging technologies for comprehensive solutions. This research outlines the diverse security layers, spanning physical, cyber, coding, and communication aspects, in the context of AVs. Furthermore, we provide insights into potential solutions for each potential attack vector, ensuring that autonomous vehicles remain secure and resilient in an evolving threat landscape.
- Abstract(参考訳): 自律走行車(AV)技術が成熟するにつれて、これらのサイバー物理システムのセキュリティ脆弱性を調べることが不可欠になる。
従来のサイバーセキュリティの懸念は議論の最前線にあることが多いが、主流のフレームワークでは見過ごされがちな脆弱性のさまざまな層を深く掘り下げることが不可欠である。
私たちのゴールは、AVオペレーターが直面する差し迫った課題を浮き彫りにして、包括的ソリューションのための新興技術を探ることです。
この研究は、AVのコンテキストにおいて、物理的、サイバー、コーディング、コミュニケーションの各側面にまたがる多様なセキュリティレイヤの概要を概説する。
さらに、我々は、潜在的な攻撃ベクトルに対する潜在的な解決策に関する洞察を提供し、自動運転車が進化する脅威の風景の中で安全でレジリエントであることを保証する。
関連論文リスト
- A Survey on Adversarial Robustness of LiDAR-based Machine Learning Perception in Autonomous Vehicles [0.0]
この調査は、AML(Adversarial Machine Learning)と自律システムの交差点に焦点を当てている。
我々は、脅威の風景を包括的に探求し、センサーに対するサイバー攻撃と敵の摂動を包含する。
本稿では、敵の脅威に対する自律運転システムの安全性確保における課題と今後の課題を簡潔に概説する。
論文 参考訳(メタデータ) (2024-11-21T01:26:52Z) - Securing Tomorrow's Smart Cities: Investigating Software Security in Internet of Vehicles and Deep Learning Technologies [1.0377683220196872]
IoV(Internet of Vehicles)におけるディープラーニング(DL)技術の統合は,徹底的な検査を必要とするセキュリティ上の課題や課題を数多く導入している。
この文献は、IoVシステムにおけるDLに関連する固有の脆弱性とリスクを概観し、セキュリティ脅威の多面的な性質に光を当てている。
論文 参考訳(メタデータ) (2024-07-23T11:56:33Z) - Confronting the Reproducibility Crisis: A Case Study of Challenges in Cybersecurity AI [0.0]
AIベースのサイバーセキュリティの重要な領域は、悪意のある摂動からディープニューラルネットワークを守ることに焦点を当てている。
VeriGauge ツールキットを用いて,認証されたロバスト性に関する先行研究の結果の検証を試みる。
私たちの発見は、標準化された方法論、コンテナ化、包括的なドキュメントの緊急性の必要性を浮き彫りにしています。
論文 参考訳(メタデータ) (2024-05-29T04:37:19Z) - Work-in-Progress: Crash Course: Can (Under Attack) Autonomous Driving Beat Human Drivers? [60.51287814584477]
本稿では,現在のAVの状況を調べることによって,自律運転における本質的なリスクを評価する。
AVの利点と、現実のシナリオにおける潜在的なセキュリティ課題との微妙なバランスを強調した、特定のクレームを開発する。
論文 参考訳(メタデータ) (2024-05-14T09:42:21Z) - Towards Guaranteed Safe AI: A Framework for Ensuring Robust and Reliable AI Systems [88.80306881112313]
我々は、AI安全性に対する一連のアプローチを紹介し、定義する。
これらのアプローチの中核的な特徴は、高保証の定量的安全性保証を備えたAIシステムを作ることである。
これら3つのコアコンポーネントをそれぞれ作成するためのアプローチを概説し、主な技術的課題を説明し、それらに対する潜在的なソリューションをいくつか提案します。
論文 参考訳(メタデータ) (2024-05-10T17:38:32Z) - Generative AI for Secure Physical Layer Communications: A Survey [80.0638227807621]
Generative Artificial Intelligence(GAI)は、AIイノベーションの最前線に立ち、多様なコンテンツを生成するための急速な進歩と非並行的な能力を示す。
本稿では,通信ネットワークの物理層におけるセキュリティ向上におけるGAIの様々な応用について,広範な調査を行う。
私たちは、物理的レイヤセキュリティの課題に対処する上で、GAIの役割を掘り下げ、通信の機密性、認証、可用性、レジリエンス、整合性に重点を置いています。
論文 参考訳(メタデータ) (2024-02-21T06:22:41Z) - Survey on Security Attacks in Connected and Autonomous Vehicular Systems [0.0]
本研究は,CAV環境におけるサイバーセキュリティの現状について概説する。
CAVのコンテキストにおけるサイバーセキュリティの脅威と弱点を、車両ネットワークに対する攻撃、インターネットに対する大規模な攻撃、その他の3つのグループに分類する。
CAVを確保するための最も最新の防衛戦術を詳述し、その効果を分析している。
論文 参考訳(メタデータ) (2023-10-14T06:37:05Z) - A Survey of Security in UAVs and FANETs: Issues, Threats, Analysis of Attacks, and Solutions [1.0923877073891446]
UAVとUAV間の通信を提供するネットワークのセキュリティを確保することが重要である。
この調査は、UAVとFlying Ad Hoc Networks(FANETs)のドメイン内のセキュリティに関する総合的な視点を提供することを目指している。
論文 参考訳(メタデータ) (2023-06-25T16:15:40Z) - Invisible for both Camera and LiDAR: Security of Multi-Sensor Fusion
based Perception in Autonomous Driving Under Physical-World Attacks [62.923992740383966]
本稿では,MDFに基づくADシステムにおけるセキュリティ問題の最初の研究について述べる。
物理的に実現可能な逆3Dプリントオブジェクトを生成し、ADシステムが検出に失敗してクラッシュする。
以上の結果から,攻撃は様々なオブジェクトタイプおよびMSFに対して90%以上の成功率を達成した。
論文 参考訳(メタデータ) (2021-06-17T05:11:07Z) - Dos and Don'ts of Machine Learning in Computer Security [74.1816306998445]
大きな可能性にもかかわらず、セキュリティにおける機械学習は、パフォーマンスを損なう微妙な落とし穴を引き起こす傾向がある。
我々は,学習ベースのセキュリティシステムの設計,実装,評価において共通の落とし穴を特定する。
我々は,落とし穴の回避や軽減を支援するために,研究者を支援するための実用的な勧告を提案する。
論文 参考訳(メタデータ) (2020-10-19T13:09:31Z) - Adversarial Machine Learning Attacks and Defense Methods in the Cyber
Security Domain [58.30296637276011]
本稿では,機械学習技術に基づくセキュリティソリューションに対する敵攻撃に関する最新の研究を要約する。
サイバーセキュリティドメインでエンドツーエンドの敵攻撃を実装するという、ユニークな課題を議論するのは、これが初めてである。
論文 参考訳(メタデータ) (2020-07-05T18:22:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。