論文の概要: Attention-Based Fusion of IQ and FFT Spectrograms with AoA Features for GNSS Jammer Localization
- arxiv url: http://arxiv.org/abs/2507.14167v2
- Date: Tue, 22 Jul 2025 07:44:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-23 15:16:11.865647
- Title: Attention-Based Fusion of IQ and FFT Spectrograms with AoA Features for GNSS Jammer Localization
- Title(参考訳): GNSSジャマーローカライゼーションのためのAoA特徴を持つIQおよびFFTスペクトルの注意に基づく融合
- Authors: Lucas Heublein, Christian Wielenberg, Thorsten Nowak, Tobias Feigl, Christopher Mutschler, Felix Ott,
- Abstract要約: ジャミング装置はグローバルナビゲーション衛星システム(GNSS)からの信号を妨害する
古典アングル・オブ・アーリバル (AoA) 法はマルチパス環境において精度を低下させる。
本研究では,ジャミング源の距離,方位,標高を推定しながら干渉の検出と分類を行う新しい手法を提案する。
- 参考スコア(独自算出の注目度): 4.674584508653125
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Jamming devices disrupt signals from the global navigation satellite system (GNSS) and pose a significant threat by compromising the reliability of accurate positioning. Consequently, the detection and localization of these interference signals are essential to achieve situational awareness, mitigating their impact, and implementing effective counter-measures. Classical Angle of Arrival (AoA) methods exhibit reduced accuracy in multipath environments due to signal reflections and scattering, leading to localization errors. Additionally, AoA-based techniques demand substantial computational resources for array signal processing. In this paper, we propose a novel approach for detecting and classifying interference while estimating the distance, azimuth, and elevation of jamming sources. Our benchmark study evaluates 128 vision encoder and time-series models to identify the highest-performing methods for each task. We introduce an attention-based fusion framework that integrates in-phase and quadrature (IQ) samples with Fast Fourier Transform (FFT)-computed spectrograms while incorporating 22 AoA features to enhance localization accuracy. Furthermore, we present a novel dataset of moving jamming devices recorded in an indoor environment with dynamic multipath conditions and demonstrate superior performance compared to state-of-the-art methods.
- Abstract(参考訳): ジャミング装置はグローバルナビゲーション衛星システム(GNSS)からの信号を妨害し、正確な位置決めの信頼性を妥協することで重大な脅威となる。
したがって、これらの干渉信号の検出と局所化は、状況認識の実現、影響軽減、効果的な対策実施に不可欠である。
AoA (Classical Angle of Arrival) 法は信号反射や散乱によるマルチパス環境において精度が低下し、局所化誤差が生じる。
さらに、AoAベースの技術はアレイ信号処理に相当な計算資源を必要とする。
本稿では,ジャミング源の距離,方位,高さを推定しながら干渉の検出と分類を行う新しい手法を提案する。
本ベンチマークでは,128個の視覚エンコーダと時系列モデルを評価し,タスクごとの最高性能の手法を同定する。
In-phase and quadrature (IQ) sample with Fast Fourier Transform (FFT)-computed spectrograms in-phase and quadrature (IQ) spectrograms with using 22 AoA features to enhance localization accuracy。
さらに,動的マルチパス条件で室内環境に記録された移動ジャミング装置の新たなデータセットを提案し,最先端手法と比較して優れた性能を示す。
関連論文リスト
- Inference-Time Gaze Refinement for Micro-Expression Recognition: Enhancing Event-Based Eye Tracking with Motion-Aware Post-Processing [2.5465367830324905]
イベントベースの視線追跡は、きめ細かい認知状態の推測に重要な可能性を秘めている。
本稿では、既存の事象に基づく視線推定モデルの出力を高めるために、モデルに依存しない推論時間改善フレームワークを提案する。
論文 参考訳(メタデータ) (2025-06-14T14:48:11Z) - A Hybrid Framework for Statistical Feature Selection and Image-Based Noise-Defect Detection [55.2480439325792]
本稿では,統計的特徴選択と分類技術を統合し,欠陥検出精度を向上させるハイブリッドフレームワークを提案する。
工業画像から抽出した55個の特徴を統計的手法を用いて解析した。
これらの手法をフレキシブルな機械学習アプリケーションに統合することにより、検出精度を改善し、偽陽性や誤分類を減らす。
論文 参考訳(メタデータ) (2024-12-11T22:12:21Z) - Multitask Learning for SAR Ship Detection with Gaussian-Mask Joint Segmentation [20.540873039361102]
本稿では,オブジェクト検出,スペックル抑制,ターゲットセグメンテーションタスクからなるSAR船舶検出のためのマルチタスク学習フレームワークを提案する。
アスペクト比重み付けによる角度分類損失を導入し、角度周期性と物体比に対処して検出精度を向上させる。
スペックル抑制タスクはデュアルフュージョンアテンション機構を使用してノイズを低減し、浅くノイズを生じさせる特徴を融合させ、ロバスト性を高める。
ターゲットセグメンテーションタスクは、回転したガウスマスクを利用して、乱雑な背景から対象領域を抽出するネットワークを支援し、画素レベルの予測により検出効率を向上させる。
論文 参考訳(メタデータ) (2024-11-21T05:10:41Z) - Convolutional Neural Network Design and Evaluation for Real-Time Multivariate Time Series Fault Detection in Spacecraft Attitude Sensors [41.94295877935867]
本稿では,ドローンのような宇宙船の加速度計および慣性測定ユニット内のスタンプ値を検出するための新しい手法を提案する。
マルチチャネル畳み込みニューラルネットワーク(CNN)は、マルチターゲット分類を実行し、センサ内の障害を独立に検出するために使用される。
ネットワークの異常を効果的に検出し,システムレベルでの回復動作をトリガーする統合手法を提案する。
論文 参考訳(メタデータ) (2024-10-11T09:36:38Z) - Achieving Generalization in Orchestrating GNSS Interference Monitoring Stations Through Pseudo-Labeling [44.24482830284491]
ジャミング装置はグローバルナビゲーション衛星システム(GNSS)受信機の精度を損なう。
本稿では,ハイウェイに沿って配置された監視局を介し,干渉の分類を高度に一般化するML手法を提案する。
本手法は,屋内環境から現実シナリオへの適応において,高い性能を示す。
論文 参考訳(メタデータ) (2024-10-03T11:07:17Z) - Evaluating ML Robustness in GNSS Interference Classification, Characterization & Localization [42.14439854721613]
ジャミング装置はグローバルナビゲーション衛星システム(GNSS)からの信号を妨害する
本稿では、低周波アンテナから得られたスナップショットからなる広範囲なデータセットを提案する。
本研究の目的は,機械学習モデル(ML)の環境変化に対するレジリエンスを評価することである。
論文 参考訳(メタデータ) (2024-09-23T15:20:33Z) - Real-time gravitational-wave inference for binary neutron stars using machine learning [71.29593576787549]
近似を行なわずに1秒で完全なBNS推論を行う機械学習フレームワークを提案する。
本手法は, (i) 合併前の正確な局所化を提供することにより, (i) 近似低遅延法と比較して, (ii) 局所化精度を$sim30%$で改善すること, (iii) 光度距離, 傾斜, 質量に関する詳細な情報を提供することにより, (i) マルチメーサの観測を向上する。
論文 参考訳(メタデータ) (2024-07-12T18:00:02Z) - Robust Collaborative Perception without External Localization and Clock Devices [52.32342059286222]
複数のエージェントをまたいだ一貫した空間的時間的調整は、協調的な知覚の基礎である。
従来の手法は、ローカライゼーションとクロック信号を提供するために外部デバイスに依存している。
本稿では,様々なエージェントの知覚データに内在する幾何学的パターンを認識して整列する手法を提案する。
論文 参考訳(メタデータ) (2024-05-05T15:20:36Z) - Over-the-Air Federated Learning and Optimization [52.5188988624998]
エッジ・ザ・エア計算(AirComp)によるフェデレーション学習(FL)に焦点を当てる。
本稿では,AirComp ベースの FedAvg (AirFedAvg) アルゴリズムの凸および非凸条件下での収束について述べる。
エッジデバイス(モデル、勾配、モデル差など)で送信できるローカルアップデートの種類によって、AirFedAvgで送信するとアグリゲーションエラーが発生する可能性がある。
さらに、より実用的な信号処理方式を検討し、通信効率を改善し、これらの信号処理方式によって引き起こされるモデル集約誤差の異なる形式に収束解析を拡張する。
論文 参考訳(メタデータ) (2023-10-16T05:49:28Z) - Multi-task Learning for Radar Signal Characterisation [48.265859815346985]
本稿では,マルチタスク学習(MTL)問題として,レーダ信号の分類と特徴化に取り組むためのアプローチを提案する。
本稿では,複数のレグレッションタスクと分類タスクを同時最適化するIQST(IQ Signal Transformer)を提案する。
合成レーダデータセット上で提案したMTLモデルの性能を示すとともに,レーダ信号の特徴付けのための一級ベンチマークも提供する。
論文 参考訳(メタデータ) (2023-06-19T12:01:28Z) - Deep Reinforcement Learning for IRS Phase Shift Design in
Spatiotemporally Correlated Environments [93.30657979626858]
本稿では,チャネル相関と目的地動きを考慮したディープアクター批判アルゴリズムを提案する。
チャネルが時間的に相関している場合、コンバージェンスを抑制する方法において、関数近似を伴う状態表現にSNRを組み込むことが示される。
論文 参考訳(メタデータ) (2022-11-02T22:07:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。