論文の概要: Breaking Information Cocoons: A Hyperbolic Graph-LLM Framework for Exploration and Exploitation in Recommender Systems
- arxiv url: http://arxiv.org/abs/2411.13865v2
- Date: Sat, 01 Feb 2025 13:05:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-04 16:08:16.615094
- Title: Breaking Information Cocoons: A Hyperbolic Graph-LLM Framework for Exploration and Exploitation in Recommender Systems
- Title(参考訳): Breaking Information Cocoons: Recommenderシステムにおける探索と爆発のためのハイパーボリックグラフ-LLMフレームワーク
- Authors: Qiyao Ma, Menglin Yang, Mingxuan Ju, Tong Zhao, Neil Shah, Rex Ying,
- Abstract要約: HERecはハイパーボリックグラフ-LLMフレームワークで、レコメンダシステムの探索とエクスプロイトを効果的にバランスさせる。
本フレームワークでは,(1)ハイパーボリック空間におけるテキスト記述とユーザ-イテム協調情報とを協調的に整合する階層型グラフ-LLM機構,(2)ユーザ-調整可能な探索-探索トレードオフを実現する階層型表現構造を導入している。
- 参考スコア(独自算出の注目度): 41.43693025937088
- License:
- Abstract: Modern recommender systems often create information cocoons, restricting users' exposure to diverse content. A key challenge lies in balancing content exploration and exploitation while allowing users to adjust their recommendation preferences. Intuitively, this balance can be modeled as a tree-structured representation, where depth search facilitates exploitation and breadth search enables exploration. However, existing approaches face two fundamental limitations: Euclidean methods struggle to capture hierarchical structures, while hyperbolic methods, despite their superior hierarchical modeling, lack semantic understanding of user and item profiles and fail to provide a principled mechanism for balancing exploration and exploitation. To address these challenges, we propose HERec, a hyperbolic graph-LLM framework that effectively balances exploration and exploitation in recommender systems. Our framework introduces two key innovations: (1) a hierarchical-aware graph-LLM mechanism that jointly aligns textual descriptions with user-item collaborative information in hyperbolic space, and (2) a hierarchical representation structure that enables user-adjustable exploration-exploitation trade-offs. Extensive experiments demonstrate that HERec consistently outperforms both Euclidean and hyperbolic baselines, achieving up to 5.49% improvement in utility metrics and 11.39% increase in diversity metrics, effectively mitigating information cocoons. We open-source our model implementation at https://github.com/Martin-qyma/HERec.
- Abstract(参考訳): 現代のレコメンデーターシステムは、しばしば情報ココーンを作成し、多様なコンテンツへのユーザーの露出を制限する。
重要な課題は、コンテンツの探索とエクスプロイトのバランスを保ちながら、ユーザーは推奨の好みを調整できることだ。
直感的には、このバランスは木構造表現としてモデル化することができる。
ユークリッド手法は階層構造を捉えるのに苦労するが、双曲的手法は優れた階層的モデリングにもかかわらず、ユーザとアイテムプロファイルのセマンティックな理解が欠如し、探索と搾取のバランスをとるための原則的なメカニズムを提供できない。
これらの課題に対処するために,HERecを提案する。HERecは,レコメンデーションシステムにおける探索とエクスプロイトを効果的にバランスさせるハイパーボリックグラフ-LLMフレームワークである。
本フレームワークでは,(1)ハイパーボリック空間におけるテキスト記述とユーザ-イテム協調情報とを協調的に整合する階層型グラフ-LLM機構,(2)ユーザ-調整可能な探索-探索トレードオフを実現する階層型表現構造を導入している。
大規模な実験では、HERecはユークリッドベースラインと双曲ベースラインの両方を一貫して上回り、ユーティリティメトリクスが5.49%、多様性メトリクスが11.39%向上し、情報ココーンを効果的に軽減している。
私たちはモデル実装をhttps://github.com/Martin-qyma/HERec.comでオープンソース化しました。
関連論文リスト
- GSSF: Generalized Structural Sparse Function for Deep Cross-modal Metric Learning [51.677086019209554]
ペアワイド類似性学習のためのモダリティ間の強力な関係を捕捉する汎用構造スパースを提案する。
距離メートル法は、対角線とブロック対角線の2つの形式を微妙にカプセル化する。
クロスモーダルと2つの余分なユニモーダル検索タスクの実験は、その優位性と柔軟性を検証した。
論文 参考訳(メタデータ) (2024-10-20T03:45:50Z) - LightRAG: Simple and Fast Retrieval-Augmented Generation [12.86888202297654]
Retrieval-Augmented Generation (RAG) システムは、外部知識ソースを統合することで、大規模言語モデル(LLM)を強化する。
既存のRAGシステムには、フラットなデータ表現への依存やコンテキスト認識の欠如など、大きな制限がある。
テキストインデックスと検索プロセスにグラフ構造を組み込んだLightRAGを提案する。
論文 参考訳(メタデータ) (2024-10-08T08:00:12Z) - Towards a Theoretical Understanding of Two-Stage Recommender Systems [0.5439020425819]
プロダクショングレードのレコメンダシステムは、Netflix、Pinterest、Amazonなど、オンラインメディアサービスで使用されている大規模なコーパスに大きく依存している。
最適なレコメンデータシステムに強い収束をもたらす2段階レコメンデータの挙動について検討する。
本研究では,2段階のレコメンデータが,商品の属性や属性が評価に与える影響をカプセル化できることを数値的に示す。
論文 参考訳(メタデータ) (2024-02-23T21:11:55Z) - Bidirectional Trained Tree-Structured Decoder for Handwritten
Mathematical Expression Recognition [51.66383337087724]
Handwriting Mathematical Expression Recognition (HMER) タスクは、OCRの分野における重要な分岐である。
近年の研究では、双方向コンテキスト情報の導入により、HMERモデルの性能が大幅に向上することが示されている。
本稿では,MF-SLT と双方向非同期トレーニング (BAT) 構造を提案する。
論文 参考訳(メタデータ) (2023-12-31T09:24:21Z) - Hyperbolic Representation Learning: Revisiting and Advancing [43.1661098138936]
本稿では,現在普及しているhlmを精査する位置追跡機構を導入し,学習された表現が準最適で不満足であることを明らかにする。
本稿では,ノードの双曲的距離から推定されるコストフリーな階層的情報を原点に組み込むことにより,シンプルで効果的な情報埋め込み手法であるハイボリックインフォメーション(HIE)を提案する。
提案手法は, 競合するベースラインに比べて最大21.4%向上した。
論文 参考訳(メタデータ) (2023-06-15T13:25:39Z) - Bilevel Fast Scene Adaptation for Low-Light Image Enhancement [50.639332885989255]
低照度シーンにおける画像の強調は、コンピュータビジョンにおいて難しいが、広く懸念されている課題である。
主な障害は、異なるシーンにまたがる分散の相違によるモデリングの混乱にある。
上述の潜在対応をモデル化するための双レベルパラダイムを導入する。
エンコーダのシーン非関連な一般化を多様なシーンにもたらすために、双方向学習フレームワークを構築した。
論文 参考訳(メタデータ) (2023-06-02T08:16:21Z) - Supervised Hypergraph Reconstruction [3.69853388955692]
高次相互作用を含む多くの実世界のシステムは、ハイパーグラフによって符号化される。
データセットは、しばしば公開され、投影の形でのみ研究される。
教師付きハイパーグラフ再構成を提案する。
我々のアプローチは、ハードデータセット上での精度の桁違いに全てのベースラインを上回ります。
論文 参考訳(メタデータ) (2022-11-23T23:15:03Z) - HRCF: Enhancing Collaborative Filtering via Hyperbolic Geometric
Regularization [52.369435664689995]
HRCF (textitHyperbolic Regularization powered Collaborative Filtering) を導入し,幾何認識型双曲正規化器を設計する。
具体的には、ルートアライメントとオリジン認識ペナルティによる最適化手順を強化する。
提案手法は,双曲的凝集による過度な平滑化問題に対処でき,モデルの識別能力も向上する。
論文 参考訳(メタデータ) (2022-04-18T06:11:44Z) - Provably Accurate and Scalable Linear Classifiers in Hyperbolic Spaces [39.71927912296049]
スケーラブルで単純な双曲型線形分類器を学習するための統一的なフレームワークを提案する。
我々のアプローチの要点は、ポアンカーの球体モデルに焦点を合わせ、接空間形式を用いて分類問題を定式化することである。
Poincarの2階と戦略的パーセプトロンの優れた性能は、提案フレームワークが双曲空間における一般的な機械学習問題にまで拡張可能であることを示している。
論文 参考訳(メタデータ) (2022-03-07T21:36:21Z) - SEEK: Segmented Embedding of Knowledge Graphs [77.5307592941209]
本稿では,モデル複雑性を増大させることなく,高い競争力を持つ関係表現性を実現する軽量なモデリングフレームワークを提案する。
本フレームワークは,評価関数の設計に重点を置いており,1)十分な特徴相互作用の促進,2)関係の対称性と反対称性の両特性の保存,という2つの重要な特徴を強調している。
論文 参考訳(メタデータ) (2020-05-02T15:15:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。