論文の概要: Towards a Theoretical Understanding of Two-Stage Recommender Systems
- arxiv url: http://arxiv.org/abs/2403.00802v1
- Date: Fri, 23 Feb 2024 21:11:55 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-10 23:58:22.819104
- Title: Towards a Theoretical Understanding of Two-Stage Recommender Systems
- Title(参考訳): 2段階レコメンダシステムの理論的理解に向けて
- Authors: Amit Kumar Jaiswal
- Abstract要約: プロダクショングレードのレコメンダシステムは、Netflix、Pinterest、Amazonなど、オンラインメディアサービスで使用されている大規模なコーパスに大きく依存している。
最適なレコメンデータシステムに強い収束をもたらす2段階レコメンデータの挙動について検討する。
本研究では,2段階のレコメンデータが,商品の属性や属性が評価に与える影響をカプセル化できることを数値的に示す。
- 参考スコア(独自算出の注目度): 0.5439020425819
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Production-grade recommender systems rely heavily on a large-scale corpus
used by online media services, including Netflix, Pinterest, and Amazon. These
systems enrich recommendations by learning users' and items' embeddings
projected in a low-dimensional space with two-stage models (two deep neural
networks), which facilitate their embedding constructs to predict users'
feedback associated with items. Despite its popularity for recommendations, its
theoretical behaviors remain comprehensively unexplored. We study the
asymptotic behaviors of the two-stage recommender that entail a strong
convergence to the optimal recommender system. We establish certain theoretical
properties and statistical assurance of the two-stage recommender. In addition
to asymptotic behaviors, we demonstrate that the two-stage recommender system
attains faster convergence by relying on the intrinsic dimensions of the input
features. Finally, we show numerically that the two-stage recommender enables
encapsulating the impacts of items' and users' attributes on ratings, resulting
in better performance compared to existing methods conducted using synthetic
and real-world data experiments.
- Abstract(参考訳): プロダクショングレードのレコメンダシステムは、netflix、pinterest、amazonなど、オンラインメディアサービスで使用される大規模コーパスに大きく依存している。
これらのシステムは、2段階のモデル(2つのディープニューラルネットワーク)で低次元空間に投影されたユーザとアイテムの埋め込みを学習することにより、レコメンデーションを強化し、アイテムに関連するユーザのフィードバックを予測する。
推薦に人気があるにもかかわらず、理論的な行動は包括的に解明されていない。
最適レコメンダシステムへの強い収束を伴う2段階レコメンダの漸近的挙動について検討する。
2段階の推薦者の理論的特性と統計的保証を確立する。
漸近的な振る舞いに加えて,入力特徴の固有次元に依存することにより,二段階レコメンダシステムがより高速な収束を実現することを実証する。
最後に,2段階のレコメンデータにより,項目やユーザの属性が評価に与える影響をカプセル化できることを数値的に示す。
関連論文リスト
- Learning Recommender Systems with Soft Target: A Decoupled Perspective [49.83787742587449]
そこで本研究では,ソフトラベルを活用することで,目的を2つの側面として捉えるために,分離されたソフトラベル最適化フレームワークを提案する。
本稿では,ラベル伝搬アルゴリズムをモデル化したソフトラベル生成アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-10-09T04:20:15Z) - End-to-End Learnable Item Tokenization for Generative Recommendation [51.82768744368208]
本稿では,アイテムのトークン化と生成レコメンデーションをシームレスに統合した,新しいエンドツーエンド生成レコメンダであるETEGRecを提案する。
本フレームワークは、アイテムトークン化器と生成レコメンデータで構成されるデュアルエンコーダデコーダアーキテクチャに基づいて開発されている。
論文 参考訳(メタデータ) (2024-09-09T12:11:53Z) - Revisiting Reciprocal Recommender Systems: Metrics, Formulation, and Method [60.364834418531366]
RRSの性能を包括的かつ正確に評価する5つの新しい評価指標を提案する。
因果的観点からRSを定式化し、二元的介入として勧告を定式化する。
提案手法では,結果の一致を最大化する手法を提案する。
論文 参考訳(メタデータ) (2024-08-19T07:21:02Z) - Understanding or Manipulation: Rethinking Online Performance Gains of
Modern Recommender Systems [38.75457258877731]
本稿では,推薦アルゴリズムの操作度をベンチマークするフレームワークを提案する。
オンラインクリックスルー率が高いことは、必ずしもユーザーの初期嗜好をよりよく理解するという意味ではない。
我々は,制約付きユーザ嗜好操作による最適化問題として,将来のレコメンデーションアルゴリズムの研究を取り扱うべきであることを主張する。
論文 参考訳(メタデータ) (2022-10-11T17:56:55Z) - D2RLIR : an improved and diversified ranking function in interactive
recommendation systems based on deep reinforcement learning [0.3058685580689604]
本稿では,アクタ・クリティカルアーキテクチャを用いた深層強化学習に基づく推薦システムを提案する。
提案モデルでは,ユーザの嗜好に基づいて,多様かつ関連性の高いレコメンデーションリストを生成することができる。
論文 参考訳(メタデータ) (2021-10-28T13:11:29Z) - On component interactions in two-stage recommender systems [82.38014314502861]
2段階のレコメンデータは、YouTube、LinkedIn、Pinterestなど、多くのオンラインプラットフォームで使用されている。
ランク付け器と評価器の相互作用が全体の性能に大きく影響していることが示される。
特に、Mixture-of-Expertsアプローチを用いて、アイテムプールの異なるサブセットに特化するように、ノミネータを訓練する。
論文 参考訳(メタデータ) (2021-06-28T20:53:23Z) - A Survey on Neural Recommendation: From Collaborative Filtering to
Content and Context Enriched Recommendation [70.69134448863483]
レコメンデーションの研究は、ニューラルネットワークに基づく新しいレコメンダーモデルの発明にシフトした。
近年,神経リコメンデータモデルの開発が著しい進展を遂げている。
論文 参考訳(メタデータ) (2021-04-27T08:03:52Z) - Counterfactual Evaluation of Slate Recommendations with Sequential
Reward Interactions [18.90946044396516]
音楽ストリーミング、ビデオストリーミング、ニュースレコメンデーション、eコマースサービスは、しばしばシーケンシャルな方法でコンテンツを扱う。
したがって、適切なレコメンデーションのシーケンスの提供と評価は、これらのサービスにとって重要な問題である。
そこで本研究では,アナルアンバイアスの少ない報酬の逐次的相互作用が可能な新しい反事実推定器を提案する。
論文 参考訳(メタデータ) (2020-07-25T17:58:01Z) - Convolutional Gaussian Embeddings for Personalized Recommendation with
Uncertainty [17.258674767363345]
既存の埋め込みベースのレコメンデーションモデルは、低次元空間における単一の固定点に対応する埋め込みを使用する。
本稿では,不確実な嗜好に適応することが証明されたガウス埋め込みを用いた統合された深層推薦フレームワークを提案する。
本フレームワークでは,モンテカルロサンプリングと畳み込みニューラルネットワークを用いて,対象ユーザと候補項目の相関関係を計算する。
論文 参考訳(メタデータ) (2020-06-19T02:10:38Z) - Sequential Recommendation with Self-Attentive Multi-Adversarial Network [101.25533520688654]
逐次レコメンデーションにおける文脈情報の影響を明示的にモデル化するためのMFGAN(Multi-Factor Generative Adversarial Network)を提案する。
当社のフレームワークは,複数種類の因子情報を組み込むことが柔軟であり,各因子が推奨決定にどのように貢献するかを時間とともに追跡することができる。
論文 参考訳(メタデータ) (2020-05-21T12:28:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。