論文の概要: Enhancing Phishing Email Identification with Large Language Models
- arxiv url: http://arxiv.org/abs/2502.04759v1
- Date: Fri, 07 Feb 2025 08:45:50 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-10 14:57:13.176058
- Title: Enhancing Phishing Email Identification with Large Language Models
- Title(参考訳): 大規模言語モデルを用いたフィッシングメール識別の強化
- Authors: Catherine Lee,
- Abstract要約: フィッシングメールの検出における大規模言語モデル(LLM)の有効性について検討した。
実験により, LLMは高精度で高い精度を達成することが示された。
- 参考スコア(独自算出の注目度): 0.40792653193642503
- License:
- Abstract: Phishing has long been a common tactic used by cybercriminals and continues to pose a significant threat in today's digital world. When phishing attacks become more advanced and sophisticated, there is an increasing need for effective methods to detect and prevent them. To address the challenging problem of detecting phishing emails, researchers have developed numerous solutions, in particular those based on machine learning (ML) algorithms. In this work, we take steps to study the efficacy of large language models (LLMs) in detecting phishing emails. The experiments show that the LLM achieves a high accuracy rate at high precision; importantly, it also provides interpretable evidence for the decisions.
- Abstract(参考訳): フィッシングは長い間、サイバー犯罪者がよく使う戦術であり、今日のデジタル世界において大きな脅威を生じ続けている。
フィッシング攻撃の高度化と高度化に伴い、フィッシング攻撃を検出・防止するための効果的な方法の必要性が高まっている。
フィッシングメールを検出するという難しい問題に対処するために、研究者は、特に機械学習(ML)アルゴリズムに基づく多くのソリューションを開発した。
本研究では,フィッシングメールの検出における大規模言語モデル(LLM)の有効性について検討する。
実験の結果,LSMは高い精度で高い精度を達成できることが示され,さらに決定の解釈可能な証拠も提示された。
関連論文リスト
- PhishIntel: Toward Practical Deployment of Reference-Based Phishing Detection [33.98293686647553]
PhishIntelは、現実世界のデプロイメントのためのエンドツーエンドのフィッシング検出システムである。
検出プロセスを、ローカルのブラックリストと結果キャッシュをチェックする高速タスクと、オンラインのブラックリスト検証、URLクローリング、Webページ分析を実行する遅いタスクの2つに分割する。
この高速スロータスクシステムアーキテクチャは、参照ベースのフィッシング検出器の堅牢な検出能力を保ちながら、低応答レイテンシを保証する。
論文 参考訳(メタデータ) (2024-12-12T08:33:39Z) - Next-Generation Phishing: How LLM Agents Empower Cyber Attackers [10.067883724547182]
フィッシングメールのエスカレートする脅威は、Large Language Models(LLMs)の台頭により、ますます洗練されつつある。
攻撃者はLSMを利用して、より説得力があり回避的なフィッシングメールを作成するため、現在のフィッシング防御のレジリエンスを評価することが不可欠である。
我々は、Gmail Spam Filter、Apache SpamAssassin、Proofpointなどの従来のフィッシング検出と、SVM、Logistic Regression、Naive Bayesといった機械学習モデルに関する包括的な評価を行います。
以上の結果から,全検知器にまたがるリフレッシュメールの検出精度は著しく低下し,現在のフィッシング防御における重大な弱点が浮き彫りになった。
論文 参考訳(メタデータ) (2024-11-21T06:20:29Z) - Adapting to Cyber Threats: A Phishing Evolution Network (PEN) Framework for Phishing Generation and Analyzing Evolution Patterns using Large Language Models [10.58220151364159]
フィッシングはいまだに広範囲にわたるサイバー脅威であり、攻撃者は詐欺メールを使って被害者を誘惑し、機密情報を暴露している。
人工知能(AI)はフィッシング攻撃に対する防御において重要な要素となっているが、これらのアプローチは重大な制限に直面している。
本稿では,大規模言語モデル (LLM) と対向学習機構を活用するフレームワークであるPhishing Evolution Network (PEN) を提案し,高品質で現実的なフィッシングサンプルを連続的に生成する。
論文 参考訳(メタデータ) (2024-11-18T09:03:51Z) - Automated Phishing Detection Using URLs and Webpages [35.66275851732625]
LLMエージェントフレームワークの開発により,従来の参照型フィッシング検出の制約に対処する。
このエージェントは、Large Language Modelsを利用して、積極的にオンライン情報を取得し、活用する。
我々の手法は0.945の精度で達成され、既存の解(DynaPhish)を0.445で大幅に上回っている。
論文 参考訳(メタデータ) (2024-08-03T05:08:27Z) - Evaluating the Efficacy of Large Language Models in Identifying Phishing Attempts [2.6012482282204004]
何十年にもわたるサイバー犯罪戦術であるフィッシングは、今日のデジタル世界において大きな脅威となっている。
本稿では,15大言語モデル (LLM) がフィッシング手法の検出に有効であることを示す。
論文 参考訳(メタデータ) (2024-04-23T19:55:18Z) - KnowPhish: Large Language Models Meet Multimodal Knowledge Graphs for Enhancing Reference-Based Phishing Detection [36.014171641453615]
各ブランドに関する情報が豊富な20万のブランドを含む,自動知識収集パイプラインを提案する。
KnowPhishは、既存の参照ベースのフィッシング検出器の性能を高めるために使用できる。
結果として得られたマルチモーダルフィッシング検出手法であるKnowPhish Detectorは,ロゴの有無にかかわらずフィッシングWebページを検出することができる。
論文 参考訳(メタデータ) (2024-03-04T17:38:32Z) - ChatSpamDetector: Leveraging Large Language Models for Effective Phishing Email Detection [2.3999111269325266]
本研究では,大規模な言語モデル(LLM)を用いてフィッシングメールを検出するシステムChatSpamDetectorを紹介する。
LLM解析に適したプロンプトに電子メールデータを変換することにより、電子メールがフィッシングされているか否かを高精度に判定する。
総合的なフィッシングメールデータセットを用いて評価を行い,複数のLLMおよびベースラインシステムと比較した。
論文 参考訳(メタデータ) (2024-02-28T06:28:15Z) - An Explainable Transformer-based Model for Phishing Email Detection: A
Large Language Model Approach [2.8282906214258805]
フィッシングメール(英: Phishing email)は、機密情報を盗んだり、金銭的損害を与える目的で偽のメールを送ることによって、ユーザーを騙そうとする深刻なサイバー脅威である。
大規模な学術研究にもかかわらず、フィッシング検出はサイバーセキュリティの分野で今も進行中で恐ろしい課題である。
フィッシングメールの検出のために最適化された微調整変換器を用いた DistilBERT モデルを提案する。
論文 参考訳(メタデータ) (2024-02-21T15:23:21Z) - Prompted Contextual Vectors for Spear-Phishing Detection [41.26408609344205]
スパイアフィッシング攻撃は重大なセキュリティ上の課題を示す。
本稿では,新しい文書ベクトル化手法に基づく検出手法を提案する。
提案手法は, LLM生成したスピアフィッシングメールの識別において, 91%のF1スコアを達成する。
論文 参考訳(メタデータ) (2024-02-13T09:12:55Z) - Deep convolutional forest: a dynamic deep ensemble approach for spam
detection in text [219.15486286590016]
本稿では,スパム検出のための動的深層アンサンブルモデルを提案する。
その結果、このモデルは高い精度、リコール、f1スコア、98.38%の精度を達成した。
論文 参考訳(メタデータ) (2021-10-10T17:19:37Z) - Phishing and Spear Phishing: examples in Cyber Espionage and techniques
to protect against them [91.3755431537592]
フィッシング攻撃は、2012年以降、サイバー攻撃の91%以上を突破し、オンライン詐欺で最も使われているテクニックとなっている。
本研究は, フィッシングとスピア・フィッシングによる攻撃が, 結果を大きくする5つのステップを通じて, フィッシングとスピア・フィッシングによる攻撃の実施方法についてレビューした。
論文 参考訳(メタデータ) (2020-05-31T18:10:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。