AmpliNetECG12: A lightweight SoftMax-based relativistic amplitude amplification architecture for 12 lead ECG classification
- URL: http://arxiv.org/abs/2411.13903v1
- Date: Thu, 21 Nov 2024 07:28:24 GMT
- Title: AmpliNetECG12: A lightweight SoftMax-based relativistic amplitude amplification architecture for 12 lead ECG classification
- Authors: Shreya Srivastava,
- Abstract summary: This research presents a novel deep-learning architecture that aims to diagnose heart abnormalities quickly and accurately.
We devised a new activation function called aSoftMax, designed to improve the visibility of ECG deflections.
We obtain exceptional accuracy of 84% in diagnosing cardiac disorders.
- Score: 0.0
- License:
- Abstract: The urgent need to promptly detect cardiac disorders from 12-lead Electrocardiograms using limited computations is motivated by the heart's fast and complex electrical activity and restricted computational power of portable devices. Timely and precise diagnoses are crucial since delays might significantly impact patient health outcomes. This research presents a novel deep-learning architecture that aims to diagnose heart abnormalities quickly and accurately. We devised a new activation function called aSoftMax, designed to improve the visibility of ECG deflections. The proposed activation function is used with Convolutional Neural Network architecture to includes kernel weight sharing across the ECG's various leads. This innovative method thoroughly generalizes the global 12-lead ECG features and minimizes the model's complexity by decreasing the trainable parameters. aSoftMax, combined with enhanced CNN architecture yielded AmpliNetECG12, we obtain exceptional accuracy of 84% in diagnosing cardiac disorders. AmpliNetECG12 shows outstanding prediction ability when used with the CPSC2018 dataset for arrhythmia classification. The model attains an F1-score of 80.71% and a ROC-AUC score of 96.00%, with 280,000 trainable parameters which signifies the lightweight yet efficient nature of AmpliNetECG12. The stochastic characteristics of aSoftMax, a fundamental element of AmpliNetECG12, improve prediction accuracy and also increasse the model's interpretability. This feature enhances comprehension of important ECG segments in different forms of arrhythmias, establishing a new standard of explainable architecture for cardiac disorder classification.
Related papers
- ConvexECG: Lightweight and Explainable Neural Networks for Personalized, Continuous Cardiac Monitoring [43.23305904110984]
ConvexECG is an explainable and resource-efficient method for reconstructing six-lead electrocardiograms from single-lead data.
We demonstrate that ConvexECG achieves accuracy comparable to larger neural networks while significantly reducing computational overhead.
arXiv Detail & Related papers (2024-09-19T06:14:30Z) - ECG-SMART-NET: A Deep Learning Architecture for Precise ECG Diagnosis of Occlusion Myocardial Infarction [1.7894680263068135]
We describe ECG--NET for identification of myocardial infarction (OMI)
OMI is a severe form of heart attack characterized by complete blockage of one or more coronary arteries.
Two thirds of OMI cases are difficult to visually identify from a 12-lead electrocardiogram.
arXiv Detail & Related papers (2024-05-08T19:59:16Z) - MEIT: Multi-Modal Electrocardiogram Instruction Tuning on Large Language Models for Report Generation [41.324530807795256]
Electrocardiogram (ECG) is the primary non-invasive diagnostic tool for monitoring cardiac conditions.
Recent studies have concentrated on classifying cardiac conditions using ECG data but have overlooked ECG report generation.
We propose the Multimodal ECG Instruction Tuning (MEIT) framework, the first attempt to tackle ECG report generation with LLMs and multimodal instructions.
arXiv Detail & Related papers (2024-03-07T23:20:56Z) - EKGNet: A 10.96{\mu}W Fully Analog Neural Network for Intra-Patient
Arrhythmia Classification [79.7946379395238]
We present an integrated approach by combining analog computing and deep learning for electrocardiogram (ECG) arrhythmia classification.
We propose EKGNet, a hardware-efficient and fully analog arrhythmia classification architecture that archives high accuracy with low power consumption.
arXiv Detail & Related papers (2023-10-24T02:37:49Z) - Classification of ECG based on Hybrid Features using CNNs for Wearable
Applications [2.0999222360659604]
We demonstrate improved performance for ECG classification using hybrid features and three different models.
An RR interval features based model proposed in this work achieved an accuracy of 98.98%, which is an improvement over the baseline model.
Another model combining the frequency features and the RR interval features was developed, which achieved a high accuracy of 99% with good sustained performance in noisy environments.
arXiv Detail & Related papers (2022-06-14T12:14:40Z) - Global ECG Classification by Self-Operational Neural Networks with
Feature Injection [25.15075119957447]
We propose a novel approach for inter-patient ECG classification using a compact 1D Self-Organized Operational Neural Networks (Self-ONNs)
We used 1D Self-ONN layers to automatically learn morphological representations from ECG data, enabling us to capture the shape of the ECG waveform around the R peaks.
Using the MIT-BIH arrhythmia benchmark database, the proposed method achieves the highest classification performance ever achieved.
arXiv Detail & Related papers (2022-04-07T22:49:18Z) - Machine Learning-based Efficient Ventricular Tachycardia Detection Model
of ECG Signal [0.0]
In primary diagnosis and analysis of heart defects, an ECG signal plays a significant role.
This paper presents a model for the prediction of ventricular tachycardia arrhythmia using noise filtering, a unique set of ECG features, and a machine learning-based classifier model.
arXiv Detail & Related papers (2021-12-24T05:56:09Z) - Generalizing electrocardiogram delineation: training convolutional
neural networks with synthetic data augmentation [63.51064808536065]
Existing databases for ECG delineation are small, being insufficient in size and in the array of pathological conditions they represent.
This article delves has two main contributions. First, a pseudo-synthetic data generation algorithm was developed, based in probabilistically composing ECG traces given "pools" of fundamental segments, as cropped from the original databases, and a set of rules for their arrangement into coherent synthetic traces.
Second, two novel segmentation-based loss functions have been developed, which attempt at enforcing the prediction of an exact number of independent structures and at producing closer segmentation boundaries by focusing on a reduced number of samples.
arXiv Detail & Related papers (2021-11-25T10:11:41Z) - Multilabel 12-Lead Electrocardiogram Classification Using Gradient
Boosting Tree Ensemble [64.29529357862955]
We build an algorithm using gradient boosted tree ensembles fitted on morphology and signal processing features to classify ECG diagnosis.
For each lead, we derive features from heart rate variability, PQRST template shape, and the full signal waveform.
We join the features of all 12 leads to fit an ensemble of gradient boosting decision trees to predict probabilities of ECG instances belonging to each class.
arXiv Detail & Related papers (2020-10-21T18:11:36Z) - Interpretable Deep Learning for Automatic Diagnosis of 12-lead
Electrocardiogram [15.464768773761527]
We developed a deep neural network for multi-label classification of cardiac arrhythmias in 12-lead ECG recordings.
The proposed model achieved an average area under the receiver operating characteristic curve (AUC) of 0.970 and an average F1 score of 0.813.
The best-performing leads are lead I, aVR, and V5 among 12 leads.
arXiv Detail & Related papers (2020-10-20T14:51:00Z) - ECG-DelNet: Delineation of Ambulatory Electrocardiograms with Mixed
Quality Labeling Using Neural Networks [69.25956542388653]
Deep learning (DL) algorithms are gaining weight in academic and industrial settings.
We demonstrate DL can be successfully applied to low interpretative tasks by embedding ECG detection and delineation onto a segmentation framework.
The model was trained using PhysioNet's QT database, comprised of 105 ambulatory ECG recordings.
arXiv Detail & Related papers (2020-05-11T16:29:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.