EXGnet: a single-lead explainable-AI guided multiresolution network with train-only quantitative features for trustworthy ECG arrhythmia classification
- URL: http://arxiv.org/abs/2506.12404v2
- Date: Wed, 23 Jul 2025 06:58:51 GMT
- Title: EXGnet: a single-lead explainable-AI guided multiresolution network with train-only quantitative features for trustworthy ECG arrhythmia classification
- Authors: Tushar Talukder Showrav, Soyabul Islam Lincoln, Md. Kamrul Hasan,
- Abstract summary: We propose EXGnet, a novel ECG arrhythmia classification network tailored for single-lead signals.<n>XAI supervision during training directs the model's attention to clinically relevant ECG regions.<n>We introduce an innovative multiresolution block to efficiently capture both short and long-term signal features.
- Score: 1.5162243843944596
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep learning has significantly propelled the performance of ECG arrhythmia classification, yet its clinical adoption remains hindered by challenges in interpretability and deployment on resource-constrained edge devices. To bridge this gap, we propose EXGnet, a novel and reliable ECG arrhythmia classification network tailored for single-lead signals, specifically designed to balance high accuracy, explainability, and edge compatibility. EXGnet integrates XAI supervision during training via a normalized cross-correlation based loss, directing the model's attention to clinically relevant ECG regions, similar to a cardiologist's focus. This supervision is driven by automatically generated ground truth, derived through an innovative heart rate variability-based approach, without the need for manual annotation. To enhance classification accuracy without compromising deployment simplicity, we incorporate quantitative ECG features during training. These enrich the model with multi-domain knowledge but are excluded during inference, keeping the model lightweight for edge deployment. Additionally, we introduce an innovative multiresolution block to efficiently capture both short and long-term signal features while maintaining computational efficiency. Rigorous evaluation on the Chapman and Ningbo benchmark datasets validates the supremacy of EXGnet, which achieves average five-fold accuracies of 98.762% and 96.932%, and F1-scores of 97.910% and 95.527%, respectively. Comprehensive ablation studies and both quantitative and qualitative interpretability assessment confirm that the XAI guidance is pivotal, demonstrably enhancing the model's focus and trustworthiness. Overall, EXGnet sets a new benchmark by combining high-performance arrhythmia classification with interpretability, paving the way for more trustworthy and accessible portable ECG based health monitoring systems.
Related papers
- ArrhythmiaVision: Resource-Conscious Deep Learning Models with Visual Explanations for ECG Arrhythmia Classification [0.0]
We propose ArrhythmiNet V1 and V2, optimized for efficient, real-time arrhythmia classification on edge devices.<n>Inspired by MobileNet's depthwise separable convolutional design, these models maintain memory footprints of just 302.18 KB and 157.76 KB, respectively.<n>Our findings demonstrate the feasibility of combining interpretability, predictive accuracy, and computational efficiency in practical, wearable, and embedded ECG monitoring systems.
arXiv Detail & Related papers (2025-04-30T18:22:45Z) - GEM: Empowering MLLM for Grounded ECG Understanding with Time Series and Images [43.65650710265957]
We introduce GEM, the first MLLM unifying ECG time series, 12-lead ECG images and text for grounded and clinician-aligned ECG interpretation.<n> GEM enables feature-grounded analysis, evidence-driven reasoning, and a clinician-like diagnostic process through three core innovations.<n>We propose the Grounded ECG task, a clinically motivated benchmark designed to assess the MLLM's capability in grounded ECG understanding.
arXiv Detail & Related papers (2025-03-08T05:48:53Z) - AmpliNetECG12: A lightweight SoftMax-based relativistic amplitude amplification architecture for 12 lead ECG classification [0.0]
This research presents a novel deep-learning architecture that aims to diagnose heart abnormalities quickly and accurately.
We devised a new activation function called aSoftMax, designed to improve the visibility of ECG deflections.
We obtain exceptional accuracy of 84% in diagnosing cardiac disorders.
arXiv Detail & Related papers (2024-11-21T07:28:24Z) - Self-supervised inter-intra period-aware ECG representation learning for detecting atrial fibrillation [41.82319894067087]
We propose an inter-intra period-aware ECG representation learning approach.
Considering ECGs of atrial fibrillation patients exhibit the irregularity in RR intervals and the absence of P-waves, we develop specific pre-training tasks for interperiod and intraperiod representations.
Our approach demonstrates remarkable AUC performances on the BTCH dataset, textiti.e., 0.953/0.996 for paroxysmal/persistent atrial fibrillation detection.
arXiv Detail & Related papers (2024-10-08T10:03:52Z) - ConvexECG: Lightweight and Explainable Neural Networks for Personalized, Continuous Cardiac Monitoring [43.23305904110984]
ConvexECG is an explainable and resource-efficient method for reconstructing six-lead electrocardiograms from single-lead data.
We demonstrate that ConvexECG achieves accuracy comparable to larger neural networks while significantly reducing computational overhead.
arXiv Detail & Related papers (2024-09-19T06:14:30Z) - The Rlign Algorithm for Enhanced Electrocardiogram Analysis through R-Peak Alignment for Explainable Classification and Clustering [34.88496713576635]
We aim to reintroduce shallow learning techniques, including support vector machines and principal components analysis, into ECG signal processing.
To this end, we developed and evaluated a transformation that effectively restructures ECG signals into a fully structured format.
Our approach demonstrates a significant advantage for shallow machine learning methods over CNNs, especially when dealing with limited training data.
arXiv Detail & Related papers (2024-07-22T11:34:47Z) - DDSB: An Unsupervised and Training-free Method for Phase Detection in Echocardiography [37.32413956117856]
We propose an unsupervised and training-free method to identify End-Diastolic (ED) and End-Systolic (ES) frames.
By identifying anchor points and analyzing directional deformation, we effectively reduce dependence on the accuracy of initial segmentation images.
Our method achieves comparable accuracy to learning-based models without their associated drawbacks.
arXiv Detail & Related papers (2024-03-19T14:51:01Z) - EKGNet: A 10.96{\mu}W Fully Analog Neural Network for Intra-Patient
Arrhythmia Classification [79.7946379395238]
We present an integrated approach by combining analog computing and deep learning for electrocardiogram (ECG) arrhythmia classification.
We propose EKGNet, a hardware-efficient and fully analog arrhythmia classification architecture that archives high accuracy with low power consumption.
arXiv Detail & Related papers (2023-10-24T02:37:49Z) - ECG-CL: A Comprehensive Electrocardiogram Interpretation Method Based on
Continual Learning [20.465733855762835]
Electrocardiogram (ECG) monitoring is one of the most powerful technique of cardiovascular disease (CVD) early identification.
Classic rule-based algorithms are now completely outperformed by deep learning based methods.
We propose a multi-resolution model that can sustain high-resolution low-level semantic information throughout.
arXiv Detail & Related papers (2023-04-10T15:19:00Z) - HARDC : A novel ECG-based heartbeat classification method to detect
arrhythmia using hierarchical attention based dual structured RNN with
dilated CNN [3.8791511769387625]
We have developed a novel hybrid hierarchical attention-based bidirectional recurrent neural network with dilated CNN (HARDC) method for arrhythmia classification.
The proposed HARDC fully exploits the dilated CNN and bidirectional recurrent neural network unit (BiGRU-BiLSTM) architecture to generate fusion features.
Our results indicate that an automated and highly computed method to classify multiple types of arrhythmia signals holds considerable promise.
arXiv Detail & Related papers (2023-03-06T13:26:29Z) - Learning to diagnose cirrhosis from radiological and histological labels
with joint self and weakly-supervised pretraining strategies [62.840338941861134]
We propose to leverage transfer learning from large datasets annotated by radiologists, to predict the histological score available on a small annex dataset.
We compare different pretraining methods, namely weakly-supervised and self-supervised ones, to improve the prediction of the cirrhosis.
This method outperforms the baseline classification of the METAVIR score, reaching an AUC of 0.84 and a balanced accuracy of 0.75.
arXiv Detail & Related papers (2023-02-16T17:06:23Z) - SEVGGNet-LSTM: a fused deep learning model for ECG classification [38.747030782394646]
The input ECG signals are firstly segmented and normalized, and then fed into the combined VGG and LSTM network for feature extraction and classification.
An attention mechanism (SE block) is embedded into the core network for increasing the weight of important features.
arXiv Detail & Related papers (2022-10-31T07:36:48Z) - Global ECG Classification by Self-Operational Neural Networks with
Feature Injection [25.15075119957447]
We propose a novel approach for inter-patient ECG classification using a compact 1D Self-Organized Operational Neural Networks (Self-ONNs)
We used 1D Self-ONN layers to automatically learn morphological representations from ECG data, enabling us to capture the shape of the ECG waveform around the R peaks.
Using the MIT-BIH arrhythmia benchmark database, the proposed method achieves the highest classification performance ever achieved.
arXiv Detail & Related papers (2022-04-07T22:49:18Z) - DENS-ECG: A Deep Learning Approach for ECG Signal Delineation [15.648061765081264]
This paper proposes a deep learning model for real-time segmentation of heartbeats.
The proposed algorithm, named as the DENS-ECG algorithm, combines convolutional neural network (CNN) and long short-term memory (LSTM) model.
arXiv Detail & Related papers (2020-05-18T13:13:41Z) - ECG-DelNet: Delineation of Ambulatory Electrocardiograms with Mixed
Quality Labeling Using Neural Networks [69.25956542388653]
Deep learning (DL) algorithms are gaining weight in academic and industrial settings.
We demonstrate DL can be successfully applied to low interpretative tasks by embedding ECG detection and delineation onto a segmentation framework.
The model was trained using PhysioNet's QT database, comprised of 105 ambulatory ECG recordings.
arXiv Detail & Related papers (2020-05-11T16:29:12Z) - Multi-Lead ECG Classification via an Information-Based Attention
Convolutional Neural Network [1.1720399305661802]
One-dimensional convolutional neural networks (CNN) have proven to be effective in pervasive classification tasks.
We implement the Residual connection and design a structure which can learn the weights from the information contained in different channels in the input feature map.
An indicator named mean square deviation is introduced to monitor the performance of a particular model segment in the classification task.
arXiv Detail & Related papers (2020-03-25T02:28:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.