論文の概要: A Dataset for Evaluating Online Anomaly Detection Approaches for Discrete Multivariate Time Series
- arxiv url: http://arxiv.org/abs/2411.13951v2
- Date: Mon, 25 Nov 2024 14:24:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-26 14:22:07.172286
- Title: A Dataset for Evaluating Online Anomaly Detection Approaches for Discrete Multivariate Time Series
- Title(参考訳): 離散多変量時系列におけるオンライン異常検出手法の評価のためのデータセット
- Authors: Lucas Correia, Jan-Christoph Goos, Thomas Bäck, Anna V. Kononova,
- Abstract要約: 現在の公開データセットは小さすぎるため、多様ではない。
我々は、最先端のシミュレーションツールによって生成される多種多様な、広範囲で、非自明なデータセットという解決策を提案する。
トレーニングとテストサブセットが汚染された、クリーンなバージョンで提供されるように、データセットのさまざまなバージョンを利用可能にしています。
予想通り、ベースライン実験では、データセットの半教師付きバージョンでトレーニングされたアプローチが、教師なしバージョンよりも優れていた。
- 参考スコア(独自算出の注目度): 0.01874930567916036
- License:
- Abstract: Benchmarking anomaly detection approaches for multivariate time series is challenging due to the lack of high-quality datasets. Current publicly available datasets are too small, not diverse and feature trivial anomalies, which hinders measurable progress in this research area. We propose a solution: a diverse, extensive, and non-trivial dataset generated via state-of-the-art simulation tools that reflects realistic behaviour of an automotive powertrain, including its multivariate, dynamic and variable-state properties. To cater for both unsupervised and semi-supervised anomaly detection settings, as well as time series generation and forecasting, we make different versions of the dataset available, where training and test subsets are offered in contaminated and clean versions, depending on the task. We also provide baseline results from a small selection of approaches based on deterministic and variational autoencoders, as well as a non-parametric approach. As expected, the baseline experimentation shows that the approaches trained on the semi-supervised version of the dataset outperform their unsupervised counterparts, highlighting a need for approaches more robust to contaminated training data.
- Abstract(参考訳): 多変量時系列に対する異常検出手法のベンチマークは、高品質なデータセットが欠如しているため困難である。
現在公開されているデータセットは小さすぎるため、多様性はなく、特徴の自明な異常があり、この研究領域における測定可能な進歩を妨げる。
我々は,多変量,動的および可変状態特性を含む自動車パワートレインの現実的な挙動を反映した,最先端のシミュレーションツールによって生成される多種多様で広範かつ非自明なデータセットを提案する。
教師なしと半教師付きの両方の異常検出設定と時系列生成と予測を行うため、タスクに応じてトレーニングとテストサブセットが汚染されたクリーンなバージョンで提供されるように、データセットの異なるバージョンを作成します。
また、決定論的および変動的オートエンコーダに基づく少数のアプローチ選択と、非パラメトリックアプローチによるベースライン結果も提供する。
予想通り、ベースラインの実験では、データセットの半教師付きバージョンでトレーニングされたアプローチが、教師なしのアプローチよりも優れており、汚染されたトレーニングデータに対してより堅牢なアプローチの必要性が強調されている。
関連論文リスト
- TeVAE: A Variational Autoencoder Approach for Discrete Online Anomaly Detection in Variable-state Multivariate Time-series Data [0.017476232824732776]
本研究では,時間変動型オートエンコーダ(TeVAE)を提案する。
適切に設定された場合、TeVAEは異常を6%だけ間違ったタイミングでフラグし、65%の異常を検知する。
論文 参考訳(メタデータ) (2024-07-09T13:32:33Z) - A Comprehensive Library for Benchmarking Multi-class Visual Anomaly Detection [52.228708947607636]
本稿では,新しい手法のモジュラーフレームワークであるADerを包括的視覚異常検出ベンチマークとして紹介する。
このベンチマークには、産業ドメインと医療ドメインからの複数のデータセットが含まれており、15の最先端メソッドと9つの包括的なメトリクスを実装している。
我々は,異なる手法の長所と短所を客観的に明らかにし,多クラス視覚異常検出の課題と今後の方向性について考察する。
論文 参考訳(メタデータ) (2024-06-05T13:40:07Z) - Towards a General Time Series Anomaly Detector with Adaptive Bottlenecks and Dual Adversarial Decoders [16.31103717602631]
時系列異常検出は幅広い応用において重要な役割を果たす。
既存のメソッドでは、データセットごとに1つの特定のモデルをトレーニングする必要があります。
本稿では,広範囲なマルチドメインデータセット上で事前学習した時系列異常検出モデルを提案する。
論文 参考訳(メタデータ) (2024-05-24T06:59:43Z) - Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
本稿では,グラフ時間過程と異常スコアラを用いて異常を検出するGST-Proという新しいフレームワークを提案する。
実験結果から,GST-Pro法は時系列データ中の異常を効果的に検出し,最先端の手法より優れていることがわかった。
論文 参考訳(メタデータ) (2024-01-11T10:10:16Z) - MA-VAE: Multi-head Attention-based Variational Autoencoder Approach for
Anomaly Detection in Multivariate Time-series Applied to Automotive Endurance
Powertrain Testing [0.7499722271664147]
マルチヘッドアテンション(MA-VAE)を用いた変分オートエンコーダを提案する。
ラベルのないデータでトレーニングを行うと、MA-VAEは非常に少ない偽陽性を提供するが、提示されるほとんどの異常を検出することもできる。
異常がフラグ付けされ、異常の67%が見つかるのは、9%の時間誤りである。
論文 参考訳(メタデータ) (2023-09-05T14:05:37Z) - Tackling Diverse Minorities in Imbalanced Classification [80.78227787608714]
不均衡データセットは、様々な現実世界のアプリケーションで一般的に見られ、分類器の訓練において重要な課題が提示されている。
マイノリティクラスとマイノリティクラスの両方のデータサンプルを混合することにより、反復的に合成サンプルを生成することを提案する。
提案するフレームワークの有効性を,7つの公開ベンチマークデータセットを用いて広範な実験により実証する。
論文 参考訳(メタデータ) (2023-08-28T18:48:34Z) - Detection of Anomalies in Multivariate Time Series Using Ensemble
Techniques [3.2422067155309806]
最終的な決定に向けて,複数の基本モデルを組み合わせたアンサンブル手法を提案する。
また,ロジスティック回帰器を用いて基本モデルの出力を結合する半教師付き手法を提案する。
異常検出精度の点での性能改善は、教師なしモデルでは2%、半教師なしモデルでは少なくとも10%に達する。
論文 参考訳(メタデータ) (2023-08-06T17:51:22Z) - Detecting Multivariate Time Series Anomalies with Zero Known Label [17.930211011723447]
MTGFlowは多変量時系列異常検出のための教師なし異常検出手法である。
エンティティ間の複雑な相互依存性と各エンティティ固有の特性は、密度推定に重大な課題を生じさせる。
7つのベースラインを持つ5つの公開データセットの実験が行われ、MTGFlowはSOTA法を最大5.0AUROC%で上回っている。
論文 参考訳(メタデータ) (2022-08-03T14:38:19Z) - Meta-learning One-class Classifiers with Eigenvalue Solvers for
Supervised Anomaly Detection [55.888835686183995]
教師付き異常検出のためのニューラルネットワークに基づくメタラーニング手法を提案する。
提案手法は,既存の異常検出法や少数ショット学習法よりも優れた性能を実現することを実験的に実証した。
論文 参考訳(メタデータ) (2021-03-01T01:43:04Z) - TadGAN: Time Series Anomaly Detection Using Generative Adversarial
Networks [73.01104041298031]
TadGANは、GAN(Generative Adversarial Networks)上に構築された教師なしの異常検出手法である。
時系列の時間相関を捉えるために,ジェネレータと批評家のベースモデルとしてLSTMリカレントニューラルネットワークを用いる。
提案手法の性能と一般化性を示すため,いくつかの異常スコアリング手法を検証し,最も適した手法を報告する。
論文 参考訳(メタデータ) (2020-09-16T15:52:04Z) - SMART: Simultaneous Multi-Agent Recurrent Trajectory Prediction [72.37440317774556]
本稿では,将来の軌道予測における2つの重要な課題に対処する手法を提案する。
エージェントの数に関係なく、トレーニングデータと予測と一定時間の推測の両方において、マルチモーダリティ。
論文 参考訳(メタデータ) (2020-07-26T08:17:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。