論文の概要: Towards a General Time Series Anomaly Detector with Adaptive Bottlenecks and Dual Adversarial Decoders
- arxiv url: http://arxiv.org/abs/2405.15273v3
- Date: Tue, 08 Oct 2024 09:28:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-10 14:27:18.528757
- Title: Towards a General Time Series Anomaly Detector with Adaptive Bottlenecks and Dual Adversarial Decoders
- Title(参考訳): 適応型ボトルネックとデュアル逆数デコーダを用いた一般時系列異常検出器の実現に向けて
- Authors: Qichao Shentu, Beibu Li, Kai Zhao, Yang Shu, Zhongwen Rao, Lujia Pan, Bin Yang, Chenjuan Guo,
- Abstract要約: 時系列異常検出は幅広い応用において重要な役割を果たす。
既存のメソッドでは、データセットごとに1つの特定のモデルをトレーニングする必要があります。
本稿では,広範囲なマルチドメインデータセット上で事前学習した時系列異常検出モデルを提案する。
- 参考スコア(独自算出の注目度): 16.31103717602631
- License:
- Abstract: Time series anomaly detection plays a vital role in a wide range of applications. Existing methods require training one specific model for each dataset, which exhibits limited generalization capability across different target datasets, hindering anomaly detection performance in various scenarios with scarce training data. Aiming at this problem, we propose constructing a general time series anomaly detection model, which is pre-trained on extensive multi-domain datasets and can subsequently apply to a multitude of downstream scenarios. The significant divergence of time series data across different domains presents two primary challenges in building such a general model: (1) meeting the diverse requirements of appropriate information bottlenecks tailored to different datasets in one unified model, and (2) enabling distinguishment between multiple normal and abnormal patterns, both are crucial for effective anomaly detection in various target scenarios. To tackle these two challenges, we propose a General time series anomaly Detector with Adaptive Bottlenecks and Dual Adversarial Decoders (DADA), which enables flexible selection of bottlenecks based on different data and explicitly enhances clear differentiation between normal and abnormal series. We conduct extensive experiments on nine target datasets from different domains. After pre-training on multi-domain data, DADA, serving as a zero-shot anomaly detector for these datasets, still achieves competitive or even superior results compared to those models tailored to each specific dataset.
- Abstract(参考訳): 時系列異常検出は幅広い応用において重要な役割を果たす。
既存の手法では、データセット毎に1つの特定のモデルをトレーニングする必要がある。これは、異なるターゲットデータセットにわたる限定的な一般化能力を示し、訓練データが少ないさまざまなシナリオにおける異常検出のパフォーマンスを妨げる。
そこで本研究では,大規模なマルチドメインデータセット上で事前学習された時系列異常検出モデルの構築を提案し,その後,多数のダウンストリームシナリオに適用できることを示す。
1つの統合されたモデルにおいて、異なるデータセットに合わせた適切な情報ボトルネックの多様な要件を満たすこと、2つの正常パターンと異常パターンの区別を可能にすることが、それぞれのシナリオにおいて効果的な異常検出に不可欠である。
これら2つの課題に対処するために,適応型ボトルネックとデュアル逆数デコーダ(DADA)を用いた一般時系列異常検出器を提案する。
我々は、異なるドメインから9つのターゲットデータセットを広範囲に実験する。
マルチドメインデータに対する事前トレーニングの後、これらのデータセットのゼロショット異常検出として機能するDADは、特定のデータセットに合わせて調整されたモデルと比較して、競争力や優れた結果が得られる。
関連論文リスト
- ARC: A Generalist Graph Anomaly Detector with In-Context Learning [62.202323209244]
ARCは汎用的なGADアプローチであり、一対一のGADモデルで様々なグラフデータセットの異常を検出することができる。
ARCはコンテキスト内学習を備えており、ターゲットデータセットからデータセット固有のパターンを直接抽出することができる。
各種領域からの複数のベンチマークデータセットに対する大規模な実験は、ARCの優れた異常検出性能、効率、一般化性を示す。
論文 参考訳(メタデータ) (2024-05-27T02:42:33Z) - Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
本稿では,グラフ時間過程と異常スコアラを用いて異常を検出するGST-Proという新しいフレームワークを提案する。
実験結果から,GST-Pro法は時系列データ中の異常を効果的に検出し,最先端の手法より優れていることがわかった。
論文 参考訳(メタデータ) (2024-01-11T10:10:16Z) - Unraveling the "Anomaly" in Time Series Anomaly Detection: A
Self-supervised Tri-domain Solution [89.16750999704969]
異常ラベルは時系列異常検出において従来の教師付きモデルを妨げる。
自己教師型学習のような様々なSOTA深層学習技術がこの問題に対処するために導入されている。
自己教師型3領域異常検出器(TriAD)を提案する。
論文 参考訳(メタデータ) (2023-11-19T05:37:18Z) - Detecting Multivariate Time Series Anomalies with Zero Known Label [17.930211011723447]
MTGFlowは多変量時系列異常検出のための教師なし異常検出手法である。
エンティティ間の複雑な相互依存性と各エンティティ固有の特性は、密度推定に重大な課題を生じさせる。
7つのベースラインを持つ5つの公開データセットの実験が行われ、MTGFlowはSOTA法を最大5.0AUROC%で上回っている。
論文 参考訳(メタデータ) (2022-08-03T14:38:19Z) - Causality-Based Multivariate Time Series Anomaly Detection [63.799474860969156]
我々は、因果的観点から異常検出問題を定式化し、多変量データを生成するための通常の因果的メカニズムに従わない事例として、異常を考察する。
次に、まずデータから因果構造を学習し、次に、あるインスタンスが局所因果機構に対して異常であるかどうかを推定する因果検出手法を提案する。
我々は、実世界のAIOpsアプリケーションに関するケーススタディと同様に、シミュレートされたデータセットとパブリックなデータセットの両方を用いて、私たちのアプローチを評価します。
論文 参考訳(メタデータ) (2022-06-30T06:00:13Z) - Deep Federated Anomaly Detection for Multivariate Time Series Data [93.08977495974978]
本稿では,Fed-ExDNN(Federated Exemplar-based Deep Neural Network)を用いて,異なるエッジデバイス上での多変量時系列データの異常検出を行う。
ExDNNとFed-ExDNNは、最先端の異常検出アルゴリズムやフェデレーション学習技術より優れていることを示す。
論文 参考訳(メタデータ) (2022-05-09T05:06:58Z) - PIETS: Parallelised Irregularity Encoders for Forecasting with
Heterogeneous Time-Series [5.911865723926626]
マルチソースデータセットの不均一性と不規則性は時系列解析において重要な課題となる。
本研究では、異種時系列をモデル化するための新しいアーキテクチャ、PIETSを設計する。
PIETSは異種時間データを効果的にモデル化し、予測タスクにおける他の最先端手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-09-30T20:01:19Z) - Federated Variational Learning for Anomaly Detection in Multivariate
Time Series [13.328883578980237]
本稿では,非教師付き時系列異常検出フレームワークを提案する。
我々は,畳み込みGated Recurrent Unit(ConvGRU)モデルに基づいて,共有変分オートエンコーダ(VAE)を学習するために,エッジに分散したトレーニングデータを残しておく。
3つの実世界のネットワークセンサーデータセットの実験は、他の最先端モデルに対する我々のアプローチの利点を示しています。
論文 参考訳(メタデータ) (2021-08-18T22:23:15Z) - Unsupervised Deep Anomaly Detection for Multi-Sensor Time-Series Signals [10.866594993485226]
本稿では,Deep Convolutional Autoencoding Memory Network (CAE-M) という,ディープラーニングに基づく新しい異常検出アルゴリズムを提案する。
我々はまず,最大平均離散値(MMD)を用いたマルチセンサデータの空間依存性を特徴付けるディープ畳み込みオートエンコーダを構築する。
そして,線形(自己回帰モデル)と非線形予測(注意を伴う大規模LSTM)からなるメモリネットワークを構築し,時系列データから時間依存性を捉える。
論文 参考訳(メタデータ) (2021-07-27T06:48:20Z) - TadGAN: Time Series Anomaly Detection Using Generative Adversarial
Networks [73.01104041298031]
TadGANは、GAN(Generative Adversarial Networks)上に構築された教師なしの異常検出手法である。
時系列の時間相関を捉えるために,ジェネレータと批評家のベースモデルとしてLSTMリカレントニューラルネットワークを用いる。
提案手法の性能と一般化性を示すため,いくつかの異常スコアリング手法を検証し,最も適した手法を報告する。
論文 参考訳(メタデータ) (2020-09-16T15:52:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。