Mirror Target YOLO: An Improved YOLOv8 Method with Indirect Vision for Heritage Buildings Fire Detection
- URL: http://arxiv.org/abs/2411.13997v1
- Date: Thu, 21 Nov 2024 10:23:00 GMT
- Title: Mirror Target YOLO: An Improved YOLOv8 Method with Indirect Vision for Heritage Buildings Fire Detection
- Authors: Jian Liang, JunSheng Cheng,
- Abstract summary: We propose a fire detection method based on indirect vision, called Mirror Target YOLO (MITA-YOLO)
MITA-YOLO integrates indirect vision deployment and an enhanced detection module.
It uses mirror angles to achieve indirect views, solving issues with limited visibility in irregular spaces.
- Score: 39.77603385164533
- License:
- Abstract: Fires can cause severe damage to heritage buildings, making timely fire detection essential. Traditional dense cabling and drilling can harm these structures, so reducing the number of cameras to minimize such impact is challenging. Additionally, avoiding false alarms due to noise sensitivity and preserving the expertise of managers in fire-prone areas is crucial. To address these needs, we propose a fire detection method based on indirect vision, called Mirror Target YOLO (MITA-YOLO). MITA-YOLO integrates indirect vision deployment and an enhanced detection module. It uses mirror angles to achieve indirect views, solving issues with limited visibility in irregular spaces and aligning each indirect view with the target monitoring area. The Target-Mask module is designed to automatically identify and isolate the indirect vision areas in each image, filtering out non-target areas. This enables the model to inherit managers' expertise in assessing fire-risk zones, improving focus and resistance to interference in fire detection.In our experiments, we created an 800-image fire dataset with indirect vision. Results show that MITA-YOLO significantly reduces camera requirements while achieving superior detection performance compared to other mainstream models.
Related papers
- CCi-YOLOv8n: Enhanced Fire Detection with CARAFE and Context-Guided Modules [0.0]
Fire incidents in urban and forested areas pose serious threats.
We present CCi-YOLOv8n, an enhanced YOLOv8 model with targeted improvements for detecting small fires and smoke.
arXiv Detail & Related papers (2024-11-17T09:31:04Z) - LAM-YOLO: Drones-based Small Object Detection on Lighting-Occlusion Attention Mechanism YOLO [0.9062164411594178]
LAM-YOLO is an object detection model specifically designed for drone-based images.
We introduce a light-occlusion attention mechanism to enhance the visibility of small targets under different lighting conditions.
Second, we utilize an improved SIB-IoU as the regression loss function to accelerate model convergence and enhance localization accuracy.
arXiv Detail & Related papers (2024-11-01T10:00:48Z) - OOSTraj: Out-of-Sight Trajectory Prediction With Vision-Positioning Denoising [49.86409475232849]
Trajectory prediction is fundamental in computer vision and autonomous driving.
Existing approaches in this field often assume precise and complete observational data.
We present a novel method for out-of-sight trajectory prediction that leverages a vision-positioning technique.
arXiv Detail & Related papers (2024-04-02T18:30:29Z) - D-YOLO a robust framework for object detection in adverse weather conditions [0.0]
Adverse weather conditions including haze, snow and rain lead to decline in image qualities, which often causes a decline in performance for deep-learning based detection networks.
To better integrate image restoration and object detection tasks, we designed a double-route network with an attention feature fusion module.
We also proposed a subnetwork to provide haze-free features to the detection network. Specifically, our D-YOLO improves the performance of the detection network by minimizing the distance between the clear feature extraction subnetwork and detection network.
arXiv Detail & Related papers (2024-03-14T09:57:15Z) - Threatening Patch Attacks on Object Detection in Optical Remote Sensing
Images [55.09446477517365]
Advanced Patch Attacks (PAs) on object detection in natural images have pointed out the great safety vulnerability in methods based on deep neural networks.
We propose a more Threatening PA without the scarification of the visual quality, dubbed TPA.
To the best of our knowledge, this is the first attempt to study the PAs on object detection in O-RSIs, and we hope this work can get our readers interested in studying this topic.
arXiv Detail & Related papers (2023-02-13T02:35:49Z) - Image-Based Fire Detection in Industrial Environments with YOLOv4 [53.180678723280145]
This work looks into the potential of AI to detect and recognize fires and reduce detection time using object detection on an image stream.
To our end, we collected and labeled appropriate data from several public sources, which have been used to train and evaluate several models based on the popular YOLOv4 object detector.
arXiv Detail & Related papers (2022-12-09T11:32:36Z) - Unsupervised Wildfire Change Detection based on Contrastive Learning [1.53934570513443]
The accurate characterization of the severity of the wildfire event contributes to the characterization of the fuel conditions in fire-prone areas.
The aim of this study is to develop an autonomous system built on top of high-resolution multispectral satellite imagery, with an advanced deep learning method for detecting burned area change.
arXiv Detail & Related papers (2022-11-26T20:13:14Z) - Adversarially-Aware Robust Object Detector [85.10894272034135]
We propose a Robust Detector (RobustDet) based on adversarially-aware convolution to disentangle gradients for model learning on clean and adversarial images.
Our model effectively disentangles gradients and significantly enhances the detection robustness with maintaining the detection ability on clean images.
arXiv Detail & Related papers (2022-07-13T13:59:59Z) - Exploring Thermal Images for Object Detection in Underexposure Regions
for Autonomous Driving [67.69430435482127]
Underexposure regions are vital to construct a complete perception of the surroundings for safe autonomous driving.
The availability of thermal cameras has provided an essential alternate to explore regions where other optical sensors lack in capturing interpretable signals.
This work proposes a domain adaptation framework which employs a style transfer technique for transfer learning from visible spectrum images to thermal images.
arXiv Detail & Related papers (2020-06-01T09:59:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.