Kitaev Quantum Batteries: Super-Extensive Scaling of Ergotropy in 1D Spin$-1/2$ $XY-Γ(γ)$ Chain
- URL: http://arxiv.org/abs/2411.14074v2
- Date: Sat, 30 Nov 2024 09:09:37 GMT
- Title: Kitaev Quantum Batteries: Super-Extensive Scaling of Ergotropy in 1D Spin$-1/2$ $XY-Γ(γ)$ Chain
- Authors: Asad Ali, Samira Elghaayda, Saif Al-Kuwari, M. I. Hussain, M. T. Rahim, H. Kuniyil, C. Seida, A. El Allati, M. Mansour, Saeed Haddadi,
- Abstract summary: We investigate the performance of a novel model based on a one-dimensional (1D) spin-$1/2$ Heisenberg $XY-Gamma(gamma)$ quantum chain.
We analyze ergotropy across different spin-spin couplings, anisotropies in spin interactions, Zeeman field strengths, charging field intensities, $Gamma$ interactions, and temperature.
Our results suggest that optimal QB performance and a quantum advantage in scaling can be achieved by leveraging anisotropic spin-spin couplings and non-zero $Gamma$ interactions.
- Score: 0.5055815271772576
- License:
- Abstract: We investigate the performance of a novel model based on a one-dimensional (1D) spin-$1/2$ Heisenberg $XY-\Gamma(\gamma)$ quantum chain, also known as 1D Kitaev chain, as a working medium for a quantum battery (QB) in both closed and open system scenarios. We analyze the closed QB scenario by analytically evaluating ergotropy across different spin-spin couplings, anisotropies in spin interactions, Zeeman field strengths, charging field intensities, $\Gamma$ interactions, and temperature. Our results indicate that the ergotropy is highly dependent on spin-spin coupling and anisotropy. Under variable parameters, an increase in the spin-spin coupling strength displays quenches and exhibits non-equilibrium trends in ergotropy. After a quench, ergotropy may experience a sharp increase or drop, suggesting optimal operational conditions for QB performance. In the open QB scenario, we examine spin chains of sizes $2 \leq N \leq 8$ under the influence of dephasing, focusing on the evolution of ergotropy. We study two charging schemes: parallel charging, where spins are non-interacting, and collective charging, involving spin-spin coupling. In the former, increased Zeeman field strength enhances both the peak ergotropy and charging rate, although without any quantum advantage or super-extensive scaling. In the latter, increasing spin-spin coupling might not achieve super-extensive scaling without introducing anisotropy in the spin-spin interaction. Our results suggest that optimal QB performance and a quantum advantage in scaling can be achieved by leveraging anisotropic spin-spin couplings and non-zero $\Gamma$ interactions, allowing for faster charging and higher ergotropy under super-extensive scaling conditions up to $\alpha=1.24$ for the given size of the spin chain.
Related papers
- Non-stabilizerness of Neural Quantum States [41.94295877935867]
We introduce a methodology to estimate non-stabilizerness or "magic", a key resource for quantum complexity, with Neural Quantum States (NQS)
We study the magic content in an ensemble of random NQS, demonstrating that neural network parametrizations of the wave function capture finite non-stabilizerness besides large entanglement.
arXiv Detail & Related papers (2025-02-13T19:14:15Z) - Controlling Symmetries and Quantum Criticality in the Anisotropic Coupled-Top Model [32.553027955412986]
We investigate the anisotropic coupled-top model, which describes the interactions between two large spins along both $x-$ and $y-$directions.
We can manipulate the system's symmetry, inducing either discrete $Z$ or continuous U(1) symmetry.
The framework provides an ideal platform for experimentally controlling symmetries and investigating associated physical phenomena.
arXiv Detail & Related papers (2025-02-13T15:14:29Z) - Exploiting the presence of chiral spin states in molecular nanomagnets [47.41699406259656]
In a three-spin-center system, antiferromagnetic exchange interactions give rise to two ground-state doublets.
We explore the presence of spin-chirality in Lanthanide complexes that feature two magnetic centers.
arXiv Detail & Related papers (2025-01-21T08:23:12Z) - Ergotropy and capacity optimization in Heisenberg spin-chain quantum batteries [0.5420492913071214]
This study examines the performance of finite spin quantum batteries (QBs) using Heisenberg spin models with Dzyaloshinsky-Moriya (DM) and Kaplan--Shekhtman--Entin-Wohlman--Aharony (KSEA) interactions.
The QBs are modeled as interacting quantum spins in local inhomogeneous magnetic fields, inducing variable Zeeman splitting.
arXiv Detail & Related papers (2024-07-31T19:48:23Z) - Waveguide quantum electrodynamics at the onset of spin-spin correlations [36.136619420474766]
We find that molecules belonging to one of the two crystal sublattices form one-dimensional spin chains.
The microwave transmission shows evidences for the collective coupling of quasi-identical spins to the propagating photons.
arXiv Detail & Related papers (2024-04-04T18:00:05Z) - Unitary and efficient spin squeezing in cavity optomechanics [12.2314512523428]
We propose an approach to produce spin squeezed states of a large number of nitrogen-vacancy centers in diamond nanostructures coupled to an optical cavity.
We found that, under certain conditions, our method has the potential to enhance the spin-spin nonlinear interactions.
Taking into account the noise effects of spin dephasing and relaxtion, we found that the proposed approaches are robust against imperfections.
arXiv Detail & Related papers (2024-01-28T03:19:26Z) - Robust spectral $\pi$ pairing in the random-field Floquet quantum Ising
model [44.84660857803376]
We study level pairings in the many-body spectrum of the random-field Floquet quantum Ising model.
The robustness of $pi$ pairings against longitudinal disorder may be useful for quantum information processing.
arXiv Detail & Related papers (2024-01-09T20:37:48Z) - Quantum spin chains with bond dissipation [0.26107298043931204]
We study the effect of bond dissipation on the one-dimensional antiferromagnetic spin-$1/2$ Heisenberg model.
Our results suggest that the critical properties of the dissipative system are the same as for the spin-Peierls model.
arXiv Detail & Related papers (2023-10-17T18:46:27Z) - Scalable spin squeezing in two-dimensional arrays of dipolar large-$S$
spins [0.0]
We show that spin-spin interactions lead to scalable spin squeezing along the non-equilibrium unitary evolution in a coherent spin state.
For sufficiently small quadratic shifts, the spin squeezing dynamics is akin to that produced by the paradigmatic one-axis-twisting (OAT) model.
Spin squeezing with OAT-like scaling is shown to be protected by the robustness of long-range ferromagnetic order to quadratic shifts.
arXiv Detail & Related papers (2023-09-11T10:32:24Z) - Entanglement Entropy Growth in Disordered Spin Chains with Tunable Range
Interactions [0.0]
We study the effect of bond randomness in long-range interacting spin chains on the quantum quench dynamics.
For $alphaalpha_c$, we find that the entanglement entropy grows as a power-law with time.
arXiv Detail & Related papers (2023-03-04T13:27:56Z) - Scalable Spin Squeezing from Finite Temperature Easy-plane Magnetism [26.584014467399378]
We conjecture that any Hamiltonian exhibiting finite temperature, easy-plane ferromagnetism can be used to generate scalable spin squeezing.
Our results provide insights into the landscape of Hamiltonians that can be used to generate metrologically useful quantum states.
arXiv Detail & Related papers (2023-01-23T18:59:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.