Ergotropy and capacity optimization in Heisenberg spin-chain quantum batteries
- URL: http://arxiv.org/abs/2408.00133v2
- Date: Fri, 1 Nov 2024 16:34:15 GMT
- Title: Ergotropy and capacity optimization in Heisenberg spin-chain quantum batteries
- Authors: Asad Ali, Saif Al-Kuwari, M. I. Hussain, Tim Byrnes, M. T. Rahim, James Q. Quach, Mehrdad Ghominejad, Saeed Haddadi,
- Abstract summary: This study examines the performance of finite spin quantum batteries (QBs) using Heisenberg spin models with Dzyaloshinsky-Moriya (DM) and Kaplan--Shekhtman--Entin-Wohlman--Aharony (KSEA) interactions.
The QBs are modeled as interacting quantum spins in local inhomogeneous magnetic fields, inducing variable Zeeman splitting.
- Score: 0.5420492913071214
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study examines the performance of finite spin quantum batteries (QBs) using Heisenberg spin models with Dzyaloshinsky-Moriya (DM) and Kaplan--Shekhtman--Entin-Wohlman--Aharony (KSEA) interactions. The QBs are modeled as interacting quantum spins in local inhomogeneous magnetic fields, inducing variable Zeeman splitting. We derive analytical expressions for the maximal extractable work, ergotropy and the capacity of QBs, as recently examined by Yang et al. [Phys. Rev. Lett. 131, 030402 (2023)]. These quantities are analytically linked through certain quantum correlations, as posited in the aforementioned study. Different Heisenberg spin chain models exhibit distinct behaviors under varying conditions, emphasizing the importance of model selection for optimizing QB performance. In antiferromagnetic (AFM) systems, maximum ergotropy occurs with a Zeeman splitting field applied to either spin, while ferromagnetic (FM) systems benefit from a uniform Zeeman field. Temperature significantly impacts QB performance, with ergotropy in the AFM case being generally more robust against temperature increases compared to the FM case. Incorporating DM and KSEA couplings can significantly enhance the capacity and ergotropy extraction of QBs. However, there exists a threshold beyond which additional increases in these interactions cause a sharp decline in capacity and ergotropy. This behavior is influenced by temperature and quantum coherence, which signal the occurrence of a sudden phase transition. The resource theory of quantum coherence proposed by Baumgratz et al. [Phys. Rev. Lett. 113, 140401 (2014)] plays a crucial role in enhancing ergotropy and capacity. However, ergotropy is limited by both the system's capacity and the amount of coherence. These findings support the theoretical framework of spin-based QBs and may benefit future research on quantum energy storage devices.
Related papers
- Magnetic Dipolar Quantum Battery with Spin-Orbit Coupling [0.5055815271772576]
We investigate a magnetic dipolar system influenced by Zeeman splitting, DM interaction, and KSEA exchange interaction.
We analyze the effects of dephasing noise and thermal equilibrium on quantum resources, such as coherence, quantum discord, and concurrence.
arXiv Detail & Related papers (2024-09-08T07:12:18Z) - Quantum battery in the Heisenberg spin chain models with Dzyaloshinskii-Moriya interaction [5.094037454902481]
Quantum battery (QB) is an energy storage and extraction device conforming to the principles of quantum mechanics.
In this study, we consider the characteristics of QBs for the Heisenberg spin chain models in the absence and presence of Dzyaloshinskii-Moriya interaction.
arXiv Detail & Related papers (2024-06-23T08:23:31Z) - Entanglement in Quantum Dots: Insights from Dynamic Susceptibility and Quantum Fisher Information [0.0]
This study investigates the entanglement properties of quantum dots (QDs) under a universal Hamiltonian where the Coulomb interaction between particles (electrons or holes) decouples into a charging energy and an exchange coupling term.
By analyzing the dynamic susceptibility and quantum Fisher information (QFI), we uncover intriguing behaviors influenced by exchange constants, temperature variations, and confinement effects.
arXiv Detail & Related papers (2024-04-23T19:31:12Z) - Quantum Steering vs Entanglement and Extracting Work in an Anisotropic
Two-Qubit Heisenberg Model in Presence of External Magnetic Fields with DM
and KSEA Interactions [0.0]
The steerability between the two qubits is evaluated using quantum steering.
The concurrence serves as a witness to quantum entanglement.
We find that the nonclassical correlations in a two-qubit Heisenberg XYZ Model are fragile under thermal effects.
arXiv Detail & Related papers (2023-09-26T16:03:38Z) - Neural-network quantum states for ultra-cold Fermi gases [49.725105678823915]
This work introduces a novel Pfaffian-Jastrow neural-network quantum state that includes backflow transformation based on message-passing architecture.
We observe the emergence of strong pairing correlations through the opposite-spin pair distribution functions.
Our findings suggest that neural-network quantum states provide a promising strategy for studying ultra-cold Fermi gases.
arXiv Detail & Related papers (2023-05-15T17:46:09Z) - Entanglement in the Quantum Spherical Model -- a Review [0.0]
We review some recent results on entanglement in the Quantum Spherical Model (QSM)
The focus lays on the physical results rather than the mathematical details.
The study of entanglement properties of the QSM is feasible because the model is mappable to a Gaussian system in any dimension.
arXiv Detail & Related papers (2023-02-11T15:56:05Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Evolution of a Non-Hermitian Quantum Single-Molecule Junction at
Constant Temperature [62.997667081978825]
We present a theory for describing non-Hermitian quantum systems embedded in constant-temperature environments.
We find that the combined action of probability losses and thermal fluctuations assists quantum transport through the molecular junction.
arXiv Detail & Related papers (2021-01-21T14:33:34Z) - Spin Entanglement and Magnetic Competition via Long-range Interactions
in Spinor Quantum Optical Lattices [62.997667081978825]
We study the effects of cavity mediated long range magnetic interactions and optical lattices in ultracold matter.
We find that global interactions modify the underlying magnetic character of the system while introducing competition scenarios.
These allow new alternatives toward the design of robust mechanisms for quantum information purposes.
arXiv Detail & Related papers (2020-11-16T08:03:44Z) - Quantum Non-equilibrium Many-Body Spin-Photon Systems [91.3755431537592]
dissertation concerns the quantum dynamics of strongly-correlated quantum systems in out-of-equilibrium states.
Our main results can be summarized in three parts: Signature of Critical Dynamics, Driven Dicke Model as a Test-bed of Ultra-Strong Coupling, and Beyond the Kibble-Zurek Mechanism.
arXiv Detail & Related papers (2020-07-23T19:05:56Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.