論文の概要: Pirates of the RAG: Adaptively Attacking LLMs to Leak Knowledge Bases
- arxiv url: http://arxiv.org/abs/2412.18295v2
- Date: Sun, 29 Dec 2024 21:25:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-31 12:42:32.027384
- Title: Pirates of the RAG: Adaptively Attacking LLMs to Leak Knowledge Bases
- Title(参考訳): RAGの海賊団:LLMを攻撃して知識ベースを漏洩
- Authors: Christian Di Maio, Cristian Cosci, Marco Maggini, Valentina Poggioni, Stefano Melacci,
- Abstract要約: 本稿では,RAGシステムにプライベート知識ベースを漏洩させるブラックボックス攻撃を提案する。
関連性に基づくメカニズムとアタッカーサイドのオープンソース LLM は、(隠された)知識ベースの大部分をリークする効果的なクエリの生成を好んでいる。
- 参考スコア(独自算出の注目度): 11.101624331624933
- License:
- Abstract: The growing ubiquity of Retrieval-Augmented Generation (RAG) systems in several real-world services triggers severe concerns about their security. A RAG system improves the generative capabilities of a Large Language Models (LLM) by a retrieval mechanism which operates on a private knowledge base, whose unintended exposure could lead to severe consequences, including breaches of private and sensitive information. This paper presents a black-box attack to force a RAG system to leak its private knowledge base which, differently from existing approaches, is adaptive and automatic. A relevance-based mechanism and an attacker-side open-source LLM favor the generation of effective queries to leak most of the (hidden) knowledge base. Extensive experimentation proves the quality of the proposed algorithm in different RAG pipelines and domains, comparing to very recent related approaches, which turn out to be either not fully black-box, not adaptive, or not based on open-source models. The findings from our study remark the urgent need for more robust privacy safeguards in the design and deployment of RAG systems.
- Abstract(参考訳): いくつかの現実世界のサービスでRAG(Retrieval-Augmented Generation)システムが普及するにつれ、セキュリティに対する深刻な懸念が引き起こされる。
RAGシステムは,個人知識ベースで動作する検索機構によって,大規模言語モデル(LLM)の生成能力を向上する。
本稿では,RAGシステムに対して,既存のアプローチと異なり適応的かつ自動であるプライベート知識ベースを漏洩させるブラックボックス攻撃を提案する。
関連性に基づくメカニズムとアタッカーサイドのオープンソース LLM は、(隠された)知識ベースの大部分をリークする効果的なクエリの生成を好んでいる。
大規模な実験により、提案されたアルゴリズムはRAGパイプラインやドメインで品質を証明し、非常に最近のアプローチと比較すると、完全にブラックボックスではないか、適応的でないか、オープンソースモデルに基づいていないことが判明した。
以上の結果から,RAGシステムの設計と展開において,より堅牢なプライバシ保護の必要性が指摘された。
関連論文リスト
- RAG-Thief: Scalable Extraction of Private Data from Retrieval-Augmented Generation Applications with Agent-based Attacks [18.576435409729655]
本稿では,RAG-Thiefと呼ばれるエージェントベースの自動プライバシ攻撃を提案する。
RAGアプリケーションで使用されるプライベートデータベースから、スケーラブルな量のプライベートデータを抽出することができる。
我々の発見は、現在のRAGアプリケーションにおけるプライバシー上の脆弱性を強調し、より強力な保護の必要性を強調します。
論文 参考訳(メタデータ) (2024-11-21T13:18:03Z) - HijackRAG: Hijacking Attacks against Retrieval-Augmented Large Language Models [18.301965456681764]
我々は、新しい脆弱性、検索プロンプトハイジャック攻撃(HijackRAG)を明らかにする。
HijackRAGは、悪意のあるテキストを知識データベースに注入することで、攻撃者がRAGシステムの検索機構を操作できるようにする。
攻撃者の知識の異なるレベルに合わせたブラックボックスとホワイトボックスの攻撃戦略を提案する。
論文 参考訳(メタデータ) (2024-10-30T09:15:51Z) - Trustworthiness in Retrieval-Augmented Generation Systems: A Survey [59.26328612791924]
Retrieval-Augmented Generation (RAG)は、大規模言語モデル(LLM)の開発において、急速に重要なパラダイムへと成長してきた。
本稿では,RAGシステムの信頼性を,事実性,堅牢性,公正性,透明性,説明責任,プライバシの6つの面で評価する統一的な枠組みを提案する。
論文 参考訳(メタデータ) (2024-09-16T09:06:44Z) - ConfusedPilot: Confused Deputy Risks in RAG-based LLMs [2.423202571519879]
我々は、Copilotを混乱させ、応答に完全性と機密性を侵害するRAGシステムのセキュリティ脆弱性のクラスであるConfusedPilotを紹介します。
本研究は,現在のRAGベースのシステムにおけるセキュリティ脆弱性を強調し,今後のRAGベースのシステムを保護するための設計ガイドラインを提案する。
論文 参考訳(メタデータ) (2024-08-09T05:20:05Z) - Understand What LLM Needs: Dual Preference Alignment for Retrieval-Augmented Generation [64.7982176398485]
Retrieval-augmented Generation (RAG)は、大規模言語モデル(LLM)の幻覚化問題を緩和する効果を実証している。
本稿では,RAGシステム内での多様な知識嗜好の整合を図った汎用フレームワークであるDPA-RAGを提案する。
論文 参考訳(メタデータ) (2024-06-26T18:26:53Z) - "Glue pizza and eat rocks" -- Exploiting Vulnerabilities in Retrieval-Augmented Generative Models [74.05368440735468]
Retrieval-Augmented Generative (RAG)モデルにより大規模言語モデル(LLM)が強化される
本稿では,これらの知識基盤の開放性を敵が活用できるセキュリティ上の脅威を示す。
論文 参考訳(メタデータ) (2024-06-26T05:36:23Z) - Is My Data in Your Retrieval Database? Membership Inference Attacks Against Retrieval Augmented Generation [0.9217021281095907]
本稿では,RAGシステムに対して,メンバーシップ推論攻撃(MIA)を行うための効率的かつ使いやすい手法を提案する。
2つのベンチマークデータセットと複数の生成モデルを用いて攻撃の有効性を示す。
本研究は,RAGシステムにおけるセキュリティ対策の実施の重要性を浮き彫りにした。
論文 参考訳(メタデータ) (2024-05-30T19:46:36Z) - REAR: A Relevance-Aware Retrieval-Augmented Framework for Open-Domain Question Answering [115.72130322143275]
REAR(Relevance-Aware Retrieval-augmented approach for open-domain Question answering, QA)
我々は,特殊な設計のアセスメントモジュールを組み込むことで,LLMベースのRAGシステムのための新しいアーキテクチャを開発する。
オープンドメインの4つのQAタスクの実験では、REARは以前の競争力のあるRAGアプローチよりも大幅に優れていた。
論文 参考訳(メタデータ) (2024-02-27T13:22:51Z) - The Good and The Bad: Exploring Privacy Issues in Retrieval-Augmented
Generation (RAG) [56.67603627046346]
Retrieval-augmented Generation (RAG)は、プロプライエタリおよびプライベートデータによる言語モデルを容易にする強力な技術である。
本研究では,プライベート検索データベースの漏洩に対するRAGシステムの脆弱性を実証する,新たな攻撃手法による実証的研究を行う。
論文 参考訳(メタデータ) (2024-02-23T18:35:15Z) - ActiveRAG: Autonomously Knowledge Assimilation and Accommodation through Retrieval-Augmented Agents [49.30553350788524]
Retrieval-Augmented Generation (RAG)は、大規模言語モデル(LLM)が外部知識を活用することを可能にする。
既存のRAGモデルは、LLMを受動的情報受信者として扱うことが多い。
人間の学習行動を模倣するマルチエージェントフレームワークであるActiveRAGを紹介する。
論文 参考訳(メタデータ) (2024-02-21T06:04:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。