論文の概要: Towards Context-Rich Automated Biodiversity Assessments: Deriving AI-Powered Insights from Camera Trap Data
- arxiv url: http://arxiv.org/abs/2411.14219v1
- Date: Thu, 21 Nov 2024 15:28:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-22 15:20:16.860246
- Title: Towards Context-Rich Automated Biodiversity Assessments: Deriving AI-Powered Insights from Camera Trap Data
- Title(参考訳): コンテキストリッチ自動生物多様性評価に向けて:カメラトラップデータからAI駆動のインサイトを導出する
- Authors: Paul Fergus, Carl Chalmers, Naomi Matthews, Stuart Nixon, Andre Burger, Oliver Hartley, Chris Sutherland, Xavier Lambin, Steven Longmore, Serge Wich,
- Abstract要約: カメラトラップは生態研究において大きな新しい機会を提供する。
現在の自動画像解析手法は、影響のある保存結果をサポートするために必要な文脈的豊かさを欠いていることが多い。
本稿では、深層学習に基づく視覚と言語モデルを組み合わせて、カメラトラップのデータを用いた生態報告を改善するための統合的なアプローチを提案する。
- 参考スコア(独自算出の注目度): 0.06819010383838325
- License:
- Abstract: Camera traps offer enormous new opportunities in ecological studies, but current automated image analysis methods often lack the contextual richness needed to support impactful conservation outcomes. Here we present an integrated approach that combines deep learning-based vision and language models to improve ecological reporting using data from camera traps. We introduce a two-stage system: YOLOv10-X to localise and classify species (mammals and birds) within images, and a Phi-3.5-vision-instruct model to read YOLOv10-X binding box labels to identify species, overcoming its limitation with hard to classify objects in images. Additionally, Phi-3.5 detects broader variables, such as vegetation type, and time of day, providing rich ecological and environmental context to YOLO's species detection output. When combined, this output is processed by the model's natural language system to answer complex queries, and retrieval-augmented generation (RAG) is employed to enrich responses with external information, like species weight and IUCN status (information that cannot be obtained through direct visual analysis). This information is used to automatically generate structured reports, providing biodiversity stakeholders with deeper insights into, for example, species abundance, distribution, animal behaviour, and habitat selection. Our approach delivers contextually rich narratives that aid in wildlife management decisions. By providing contextually rich insights, our approach not only reduces manual effort but also supports timely decision-making in conservation, potentially shifting efforts from reactive to proactive management.
- Abstract(参考訳): カメラトラップは生態学研究において大きな新たな機会を提供するが、現在の自動画像解析手法では、影響のある保存結果をサポートするために必要な文脈的豊かさを欠いていることが多い。
本稿では、深層学習に基づく視覚と言語モデルを組み合わせて、カメラトラップのデータを用いた生態報告を改善するための統合的なアプローチを提案する。
画像中の種(哺乳類や鳥)をローカライズし分類するためのYOLOv10-Xと、画像中のオブジェクトを分類しにくいものに制限を克服するYOLOv10-Xバインディングボックスラベルを読むためのPhi-3.5-vision-instructモデルを導入する。
さらに、Phi-3.5は植生タイプや日時などの幅広い変数を検出し、YOLOの種検出出力に豊かな生態学的および環境的文脈を提供する。
組み合わせると、この出力はモデルの自然言語システムによって処理され、複雑なクエリに応答し、検索強化生成(RAG)を使用して、種重やIUCNステータス(直接視覚分析では得られない情報)といった外部情報に応答する。
この情報は、例えば種数、分布、動物行動、生息地選択など、生物多様性のステークホルダーに深い洞察を与え、構造化されたレポートを自動的に生成するために使用される。
私たちのアプローチは、野生生物管理の意思決定を支援する、文脈的に豊かな物語を提供します。
文脈的に豊かな洞察を提供することで、我々のアプローチは手作業の労力を減らすだけでなく、保存におけるタイムリーな意思決定もサポートします。
関連論文リスト
- Combining Observational Data and Language for Species Range Estimation [63.65684199946094]
我々は,数百万の市民科学種の観察とウィキペディアのテキスト記述を組み合わせた新しいアプローチを提案する。
我々のフレームワークは、場所、種、テキスト記述を共通空間にマッピングし、テキスト記述からゼロショット範囲の推定を可能にする。
また,本手法は観測データと組み合わせることで,少ないデータでより正確な距離推定を行うことができる。
論文 参考訳(メタデータ) (2024-10-14T17:22:55Z) - Harnessing Artificial Intelligence for Wildlife Conservation [0.0937465283958018]
保護AIは、視覚スペクトルと熱赤外線カメラを使用して、動物、人間、密猟に関連する物体を検出し、分類する。
このプラットフォームは、このデータを畳み込みニューラルネットワーク(CNN)とTransformerアーキテクチャで処理し、種を監視する。
ヨーロッパ、北アメリカ、アフリカ、東南アジアの事例研究は、このプラットフォームが種の識別、生物多様性の監視、密猟防止に成功していることを強調している。
論文 参考訳(メタデータ) (2024-08-30T09:13:31Z) - Reviving the Context: Camera Trap Species Classification as Link Prediction on Multimodal Knowledge Graphs [31.22129440376567]
カメラトラップ画像に関連付けられた構造化コンテキストを利用して,カメラトラップにおける種分類タスクの分布外一般化を促進する。
野生動物の写真は、捕獲された時間と場所の詳細と、動物種に関する構造化された生物学的知識に関連付けられる。
マルチモーダル知識グラフにおけるリンク予測として種分類を変換する新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-31T23:32:03Z) - Multimodal Foundation Models for Zero-shot Animal Species Recognition in
Camera Trap Images [57.96659470133514]
モーションアクティベートカメラトラップは、世界中の野生生物を追跡・監視するための効率的なツールである。
教師付き学習技術は、そのような画像を分析するためにうまく展開されているが、そのような訓練には専門家のアノテーションが必要である。
コストのかかるラベル付きデータへの依存を減らすことは、人間の労働力を大幅に減らした大規模野生生物追跡ソリューションを開発する上で、大きな可能性を秘めている。
論文 参考訳(メタデータ) (2023-11-02T08:32:00Z) - SatBird: Bird Species Distribution Modeling with Remote Sensing and
Citizen Science Data [68.2366021016172]
本稿では,市民科学データベース eBird の観測データから得られたラベルを用いた,米国内の位置情報のサテライトデータセットである SatBird について述べる。
ケニアでは低データのレシエーションを表すデータセットも提供しています。
リモートセンシングタスクのためのSOTAモデルを含む、データセットのベースラインセットをベンチマークします。
論文 参考訳(メタデータ) (2023-11-02T02:00:27Z) - Ensembles of Vision Transformers as a New Paradigm for Automated
Classification in Ecology [0.0]
データ効率のよい画像変換器(DeiTs)のアンサンブルが従来のSOTA(SOTA)よりも大幅に優れていたことを示す。
テストしたすべてのデータセットに対して、新しいSOTAを実現し、以前のSOTAの18.48%から87.50%の誤差を削減した。
論文 参考訳(メタデータ) (2022-03-03T14:16:22Z) - Information is Power: Intrinsic Control via Information Capture [110.3143711650806]
我々は,潜時状態空間モデルを用いて推定したエージェントの状態訪問のエントロピーを最小化する,コンパクトで汎用的な学習目的を論じる。
この目的は、不確実性の低減に対応する環境情報収集と、将来の世界状態の予測不可能性の低減に対応する環境制御の両方をエージェントに誘導する。
論文 参考訳(メタデータ) (2021-12-07T18:50:42Z) - Seeing biodiversity: perspectives in machine learning for wildlife
conservation [49.15793025634011]
機械学習は、野生生物種の理解、モニタリング能力、保存性を高めるために、この分析的な課題を満たすことができると我々は主張する。
本質的に、新しい機械学習アプローチとエコロジー分野の知識を組み合わせることで、動物生態学者は現代のセンサー技術が生み出すデータの豊富さを生かすことができる。
論文 参考訳(メタデータ) (2021-10-25T13:40:36Z) - Unifying data for fine-grained visual species classification [15.14767769034929]
465種にまたがる2.9M画像に基づいて訓練した,初期の深部畳み込みニューラルネットワークモデルを提案する。
長期的な目標は、科学者が種数と人口の健康状態のほぼリアルタイムでの分析から、保護的なレコメンデーションを行うことである。
論文 参考訳(メタデータ) (2020-09-24T01:04:18Z) - Automatic Detection and Recognition of Individuals in Patterned Species [4.163860911052052]
我々は,異なるパターンの個体の自動検出と認識のための枠組みを開発する。
我々は最近提案したFaster-RCNNオブジェクト検出フレームワークを用いて画像中の動物を効率的に検出する。
我々は,シマウマおよびジャガー画像の認識システムを評価し,他のパターンの種への一般化を示す。
論文 参考訳(メタデータ) (2020-05-06T15:29:21Z) - Automatic image-based identification and biomass estimation of
invertebrates [70.08255822611812]
時間を要する分類と分類は、どれだけの昆虫を処理できるかに強い制限を課す。
我々は、人間の専門家による分類と識別の標準的な手動アプローチを、自動画像ベース技術に置き換えることを提案する。
分類タスクには最先端のResnet-50とInceptionV3 CNNを使用する。
論文 参考訳(メタデータ) (2020-02-05T21:38:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。