論文の概要: Behavior Backdoor for Deep Learning Models
- arxiv url: http://arxiv.org/abs/2412.01369v1
- Date: Mon, 02 Dec 2024 10:54:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-04 15:49:21.733858
- Title: Behavior Backdoor for Deep Learning Models
- Title(参考訳): ディープラーニングモデルのための行動バックドア
- Authors: Jiakai Wang, Pengfei Zhang, Renshuai Tao, Jian Yang, Hao Liu, Xianglong Liu, Yunchao Wei, Yao Zhao,
- Abstract要約: 我々は,行動訓練されたバックドアモデルトレーニング手順として定義された行動バックドアアタックに向けた第一歩を踏み出す。
本稿では,行動バックドアを実装する最初のパイプライン,すなわち量子バックドア(QB)攻撃を提案する。
さまざまなモデル、データセット、タスクで実験が行われ、この新たなバックドア攻撃の有効性が実証された。
- 参考スコア(独自算出の注目度): 95.50787731231063
- License:
- Abstract: The various post-processing methods for deep-learning-based models, such as quantification, pruning, and fine-tuning, play an increasingly important role in artificial intelligence technology, with pre-train large models as one of the main development directions. However, this popular series of post-processing behaviors targeting pre-training deep models has become a breeding ground for new adversarial security issues. In this study, we take the first step towards ``behavioral backdoor'' attack, which is defined as a behavior-triggered backdoor model training procedure, to reveal a new paradigm of backdoor attacks. In practice, we propose the first pipeline of implementing behavior backdoor, i.e., the Quantification Backdoor (QB) attack, upon exploiting model quantification method as the set trigger. Specifically, to adapt the optimization goal of behavior backdoor, we introduce the behavior-driven backdoor object optimizing method by a bi-target behavior backdoor training loss, thus we could guide the poisoned model optimization direction. To update the parameters across multiple models, we adopt the address-shared backdoor model training, thereby the gradient information could be utilized for multimodel collaborative optimization. Extensive experiments have been conducted on different models, datasets, and tasks, demonstrating the effectiveness of this novel backdoor attack and its potential application threats.
- Abstract(参考訳): 量子化、プルーニング、微調整などの深層学習モデルのための様々な後処理手法は、人工知能技術においてますます重要な役割を担い、事前訓練された大規模モデルを主要な開発方向の1つである。
しかし、事前訓練された深層モデルをターゲットにしたこの一連のポストプロセッシング行動は、新たな敵のセキュリティ問題の発端となっている。
本研究では,ビヘイビアバックドアアタックの新たなパラダイムを明らかにするために,ビヘイビアバックドアモデルトレーニング手順として定義された「ビヘイビアバックドア」アタックに向けた第一歩を踏み出した。
そこで,本研究では,モデル定量化手法をセットトリガとして利用することにより,行動バックドア,すなわち量子化バックドア(QB)攻撃を実装する最初のパイプラインを提案する。
具体的には, ビヘイビア・バックドアの最適化目標に適応するために, ビヘイビア・バックドアトレーニング損失による行動駆動型バックドアオブジェクト最適化手法を導入し, 有害モデル最適化の方向性を導出する。
複数のモデルにまたがるパラメータを更新するために,アドレス共有型バックドアモデルトレーニングを採用する。
さまざまなモデル、データセット、タスクに対して大規模な実験が行われ、この新たなバックドア攻撃の有効性と潜在的なアプリケーション脅威が実証された。
関連論文リスト
- Unlearn to Relearn Backdoors: Deferred Backdoor Functionality Attacks on Deep Learning Models [6.937795040660591]
バックドア攻撃の新たなパラダイムとして,Deferred Activated Backdoor Functionality (DABF)を紹介した。
従来の攻撃とは異なり、DABFは当初バックドアを隠蔽し、起動しても良質な出力を生成する。
DABF攻撃は、マシンラーニングモデルのライフサイクルで一般的なプラクティスを利用して、モデル更新と初期デプロイ後の微調整を実行する。
論文 参考訳(メタデータ) (2024-11-10T07:01:53Z) - Mitigating Backdoor Attacks using Activation-Guided Model Editing [8.00994004466919]
バックドア攻撃は、機械学習モデルの完全性と信頼性を損なう。
本研究では,そのようなバックドア攻撃に対抗するために,機械学習による新たなバックドア緩和手法を提案する。
論文 参考訳(メタデータ) (2024-07-10T13:43:47Z) - Unlearning Backdoor Attacks through Gradient-Based Model Pruning [10.801476967873173]
本研究では,その軽減を未学習課題として扱うことによって,バックドア攻撃に対抗する新しい手法を提案する。
このアプローチは単純さと有効性を提供し、データ可用性に制限のあるシナリオに適しています。
論文 参考訳(メタデータ) (2024-05-07T00:36:56Z) - Privacy Backdoors: Enhancing Membership Inference through Poisoning Pre-trained Models [112.48136829374741]
本稿では、プライバシーバックドア攻撃という新たな脆弱性を明らかにします。
被害者がバックドアモデルに微調整を行った場合、トレーニングデータは通常のモデルに微調整された場合よりも大幅に高い速度でリークされる。
我々の発見は、機械学習コミュニティにおける重要なプライバシー上の懸念を浮き彫りにし、オープンソースの事前訓練モデルの使用における安全性プロトコルの再評価を求めている。
論文 参考訳(メタデータ) (2024-04-01T16:50:54Z) - Effective Backdoor Mitigation in Vision-Language Models Depends on the Pre-training Objective [71.39995120597999]
現代の機械学習モデルは、敵の攻撃やバックドア攻撃に弱い。
このようなリスクは、マルチモーダルモデルをトレーニングするための大規模なインターネットソースデータセット収集の一般的なプラクティスによって高められている。
CleanCLIPは、マルチモーダルモデルにおけるバックドア効果を軽減するための最先端のアプローチである。
論文 参考訳(メタデータ) (2023-11-25T06:55:13Z) - Shared Adversarial Unlearning: Backdoor Mitigation by Unlearning Shared
Adversarial Examples [67.66153875643964]
バックドア攻撃は、機械学習モデルに対する深刻なセキュリティ脅威である。
本稿では,小さなクリーンデータセットを用いて,バックドアモデルの浄化作業について検討する。
バックドアリスクと敵的リスクの関連性を確立することにより、バックドアリスクに対する新たな上限を導出する。
論文 参考訳(メタデータ) (2023-07-20T03:56:04Z) - Backdoor Defense via Suppressing Model Shortcuts [91.30995749139012]
本稿では,モデル構造の角度からバックドア機構を探索する。
攻撃成功率 (ASR) は, キースキップ接続の出力を減少させると著しく低下することを示した。
論文 参考訳(メタデータ) (2022-11-02T15:39:19Z) - Backdoor Defense with Machine Unlearning [32.968653927933296]
本研究では,マシン・アンラーニングにより,被害者モデルに注入されたバックドアを消去する新しい手法であるBAERASEを提案する。
BAERASEは、4つのベンチマークデータセットに対して、3種類の最先端バックドア攻撃の攻撃成功率を99%下げることができる。
論文 参考訳(メタデータ) (2022-01-24T09:09:12Z) - Backdoor Pre-trained Models Can Transfer to All [33.720258110911274]
そこで本研究では,トリガを含む入力を事前学習したNLPモデルの出力表現に直接マッピングする手法を提案する。
NLPにおけるトリガのユニークな特性を考慮して,バックドア攻撃の性能を測定するための2つの新しい指標を提案する。
論文 参考訳(メタデータ) (2021-10-30T07:11:24Z) - Black-box Detection of Backdoor Attacks with Limited Information and
Data [56.0735480850555]
モデルへのクエリアクセスのみを用いてバックドア攻撃を同定するブラックボックスバックドア検出(B3D)手法を提案する。
バックドア検出に加えて,同定されたバックドアモデルを用いた信頼性の高い予測手法を提案する。
論文 参考訳(メタデータ) (2021-03-24T12:06:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。