Can Artificial Intelligence Generate Quality Research Topics Reflecting Patient Concerns?
- URL: http://arxiv.org/abs/2411.14456v1
- Date: Fri, 15 Nov 2024 20:24:38 GMT
- Title: Can Artificial Intelligence Generate Quality Research Topics Reflecting Patient Concerns?
- Authors: Jiyeong Kim, Michael L. Chen, Shawheen J. Rezaei, Mariana Ramirez-Posada, Jennifer L. Caswell-Jin, Allison W. Kurian, Fauzia Riaz, Kavita Y. Sarin, Jean Y. Tang, Steven M. Asch, Eleni Linos,
- Abstract summary: We propose an automated framework leveraging innovative natural language processing (NLP) and artificial intelligence (AI)
We analyzed 614,464 patient messages from 25,549 individuals with breast or skin cancer obtained from a large academic hospital.
We generated research topics to resolve the defined issues using a widely used AI.
- Score: 0.2801039649976666
- License:
- Abstract: Patient-centered research is increasingly important in narrowing the gap between research and patient care, yet incorporating patient perspectives into health research has been inconsistent. We propose an automated framework leveraging innovative natural language processing (NLP) and artificial intelligence (AI) with patient portal messages to generate research ideas that prioritize important patient issues. We further quantified the quality of AI-generated research topics. To define patient clinical concerns, we analyzed 614,464 patient messages from 25,549 individuals with breast or skin cancer obtained from a large academic hospital (2013 to 2024), constructing a 2-staged unsupervised NLP topic model. Then, we generated research topics to resolve the defined issues using a widely used AI (ChatGPT-4o, OpenAI Inc, April 2024 version) with prompt-engineering strategies. We guided AI to perform multi-level tasks: 1) knowledge interpretation and summarization (e.g., interpreting and summarizing the NLP-defined topics), 2) knowledge generation (e.g., generating research ideas corresponding to patients issues), 3) self-reflection and correction (e.g., ensuring and revising the research ideas after searching for scientific articles), and 4) self-reassurance (e.g., confirming and finalizing the research ideas). Six highly experienced breast oncologists and dermatologists assessed the significance and novelty of AI-generated research topics using a 5-point Likert scale (1-exceptional, 5-poor). One-third of the AI-suggested research topics were highly significant and novel when both scores were lower than the average. Two-thirds of the AI-suggested topics were novel in both cancers. Our findings demonstrate that AI-generated research topics reflecting patient perspectives via a large volume of patient messages can meaningfully guide future directions in patient-centered health research.
Related papers
- Transforming Science with Large Language Models: A Survey on AI-assisted Scientific Discovery, Experimentation, Content Generation, and Evaluation [58.064940977804596]
A plethora of new AI models and tools has been proposed, promising to empower researchers and academics worldwide to conduct their research more effectively and efficiently.
Ethical concerns regarding shortcomings of these tools and potential for misuse take a particularly prominent place in our discussion.
arXiv Detail & Related papers (2025-02-07T18:26:45Z) - AI in radiological imaging of soft-tissue and bone tumours: a systematic review evaluating against CLAIM and FUTURE-AI guidelines [1.5332408886895255]
Soft-tissue and bone tumours (STBT) are rare, diagnostically challenging lesions with variable clinical behaviours and treatment approaches.
This systematic review provides an overview of Artificial Intelligence (AI) methods using radiological imaging for diagnosis and prognosis of these tumours.
arXiv Detail & Related papers (2024-08-22T15:31:48Z) - Aligning Cyber Space with Physical World: A Comprehensive Survey on Embodied AI [129.08019405056262]
Embodied Artificial Intelligence (Embodied AI) is crucial for achieving Artificial Intelligence (AGI)
MLMs andWMs have attracted significant attention due to their remarkable perception, interaction, and reasoning capabilities.
In this survey, we give a comprehensive exploration of the latest advancements in Embodied AI.
arXiv Detail & Related papers (2024-07-09T14:14:47Z) - A Survey of Artificial Intelligence in Gait-Based Neurodegenerative Disease Diagnosis [51.07114445705692]
neurodegenerative diseases (NDs) traditionally require extensive healthcare resources and human effort for medical diagnosis and monitoring.
As a crucial disease-related motor symptom, human gait can be exploited to characterize different NDs.
The current advances in artificial intelligence (AI) models enable automatic gait analysis for NDs identification and classification.
arXiv Detail & Related papers (2024-05-21T06:44:40Z) - Emotional Intelligence Through Artificial Intelligence : NLP and Deep Learning in the Analysis of Healthcare Texts [1.9374282535132377]
This manuscript presents a methodical examination of the utilization of Artificial Intelligence in the assessment of emotions in texts related to healthcare.
We scrutinize numerous research studies that employ AI to augment sentiment analysis, categorize emotions, and forecast patient outcomes.
There persist challenges, which encompass ensuring the ethical application of AI, safeguarding patient confidentiality, and addressing potential biases in algorithmic procedures.
arXiv Detail & Related papers (2024-03-14T15:58:13Z) - AI Ethics: A Bibliometric Analysis, Critical Issues, and Key Gaps [3.8214695776749013]
This study conducts a comprehensive bibliometric analysis of the AI ethics literature over the past two decades.
They present seven key AI ethics issues, encompassing the Collingridge dilemma, the AI status debate, challenges associated with AI transparency and explainability, privacy protection complications, considerations of justice and fairness, concerns about algocracy and human enfeeblement, and the issue of superintelligence.
arXiv Detail & Related papers (2024-03-12T21:43:21Z) - Are Generative AI systems Capable of Supporting Information Needs of
Patients? [4.485098382568721]
We investigate whether and how generative visual question answering systems can responsibly support patient information needs in the context of radiology imaging data.
We conducted a formative need-finding study in which participants discussed chest computed tomography (CT) scans and associated radiology reports of a fictitious close relative with a cardiothoracic radiologist.
Using thematic analysis of the conversation between participants and medical experts, we identified commonly occurring themes across interactions.
We evaluate two state-of-the-art generative visual language models against the radiologist's responses.
arXiv Detail & Related papers (2024-01-31T23:24:37Z) - Towards Possibilities & Impossibilities of AI-generated Text Detection:
A Survey [97.33926242130732]
Large Language Models (LLMs) have revolutionized the domain of natural language processing (NLP) with remarkable capabilities of generating human-like text responses.
Despite these advancements, several works in the existing literature have raised serious concerns about the potential misuse of LLMs.
To address these concerns, a consensus among the research community is to develop algorithmic solutions to detect AI-generated text.
arXiv Detail & Related papers (2023-10-23T18:11:32Z) - Improving Primary Healthcare Workflow Using Extreme Summarization of
Scientific Literature Based on Generative AI [8.901148687545103]
Our objective is to investigate the potential of generative artificial intelligence in diminishing the cognitive load experienced by practitioners.
Our research demonstrates that the use of generative AI for literature review is efficient and effective.
arXiv Detail & Related papers (2023-07-24T21:42:27Z) - The Role of AI in Drug Discovery: Challenges, Opportunities, and
Strategies [97.5153823429076]
The benefits, challenges and drawbacks of AI in this field are reviewed.
The use of data augmentation, explainable AI, and the integration of AI with traditional experimental methods are also discussed.
arXiv Detail & Related papers (2022-12-08T23:23:39Z) - Characterising Research Areas in the field of AI [68.8204255655161]
We identified the main conceptual themes by performing clustering analysis on the co-occurrence network of topics.
The results highlight the growing academic interest in research themes like deep learning, machine learning, and internet of things.
arXiv Detail & Related papers (2022-05-26T16:30:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.