論文の概要: A Neural Network Training Method Based on Distributed PID Control
- arxiv url: http://arxiv.org/abs/2411.14468v1
- Date: Mon, 18 Nov 2024 19:25:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-25 15:04:46.299278
- Title: A Neural Network Training Method Based on Distributed PID Control
- Title(参考訳): 分散PID制御に基づくニューラルネットワーク学習手法
- Authors: Jiang Kun,
- Abstract要約: 前回の記事では、対称微分方程式に基づくニューラルネットワークフレームワークを紹介した。
そこで本研究では,チェーンルールの導出ではなく,微分方程式信号の伝搬を利用した学習手法を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: In the previous article, we introduced a neural network framework based on symmetric differential equations. This novel framework exhibits complete symmetry, endowing it with perfect mathematical properties. While we have examined some of the system's mathematical characteristics, a detailed discussion of the network training methodology has not yet been presented. Drawing on the principles of the traditional backpropagation algorithm, this study proposes an alternative training approach that utilizes differential equation signal propagation instead of chain rule derivation. This approach not only preserves the effectiveness of training but also offers enhanced biological interpretability. The foundation of this methodology lies in the system's reversibility, which stems from its inherent symmetry,a key aspect of our research. However, this method alone is insufficient for effective neural network training. To address this, we further introduce a distributed Proportional-Integral-Derivative (PID) control approach, emphasizing its implementation within a closed system. By incorporating this method, we achieved both faster training speeds and improved accuracy. This approach not only offers novel insights into neural network training but also extends the scope of research into control methodologies. To validate its effectiveness, we apply this method to the MNIST dataset, demonstrating its practical utility.
- Abstract(参考訳): 前回の記事では、対称微分方程式に基づくニューラルネットワークフレームワークを紹介した。
この新しい枠組みは完全な対称性を示し、完全な数学的性質を持つ。
システムの数学的特性について検討を行ったが、ネットワークトレーニング手法に関する詳細な議論はまだ行われていない。
本研究は,従来のバックプロパゲーションアルゴリズムの原理に基づいて,チェーンルールの導出ではなく,微分方程式信号の伝搬を利用する訓練手法を提案する。
このアプローチは、トレーニングの有効性を保っているだけでなく、生物学的解釈性も向上している。
この方法論の基礎はシステムの可逆性にあるが、それはその固有の対称性から来ており、これは我々の研究の重要な側面である。
しかし、この手法だけでは効果的なニューラルネットワークトレーニングには不十分である。
これを解決するために,我々はPID(Proportional-Integral-Derivative)の分散制御手法を導入し,その実装をクローズドシステム内で強調する。
この手法を取り入れることで,学習速度の高速化と精度の向上を両立した。
このアプローチは、ニューラルネットワークトレーニングに関する新しい洞察を提供するだけでなく、制御方法論の研究範囲も拡張する。
本手法の有効性を検証するため,本手法をMNISTデータセットに適用し,実用性を示す。
関連論文リスト
- Learning by the F-adjoint [0.0]
本研究では、フィードフォワードニューラルネットワークのための教師付き学習アルゴリズムを改善するための理論的枠組みを開発し、検討する。
我々の主な結果は、勾配降下法と組み合わせた神経力学モデルを導入することにより、平衡F-随伴過程を導出したことである。
MNISTとFashion-MNISTデータセットの実験結果は、提案手法が標準バックプロパゲーショントレーニング手順を大幅に改善することを示した。
論文 参考訳(メタデータ) (2024-07-08T13:49:25Z) - Learning-Based Verification of Stochastic Dynamical Systems with Neural Network Policies [7.9898826915621965]
我々は、他のニューラルネットワークをトレーニングする検証手順を使用し、ポリシーがタスクを満足することを示す証明書として機能する。
リーチ回避タスクでは、この証明ネットワークがリーチ回避スーパーマーチンゲール(RASM)であることを示すのに十分である。
論文 参考訳(メタデータ) (2024-06-02T18:19:19Z) - Enhancing lattice kinetic schemes for fluid dynamics with Lattice-Equivariant Neural Networks [79.16635054977068]
我々はLattice-Equivariant Neural Networks (LENNs)と呼ばれる新しい同変ニューラルネットワークのクラスを提案する。
我々の手法は、ニューラルネットワークに基づく代理モデルLattice Boltzmann衝突作用素の学習を目的とした、最近導入されたフレームワーク内で開発されている。
本研究は,実世界のシミュレーションにおける機械学習強化Lattice Boltzmann CFDの実用化に向けて展開する。
論文 参考訳(メタデータ) (2024-05-22T17:23:15Z) - An Analytic Solution to Covariance Propagation in Neural Networks [10.013553984400488]
本稿では,ニューラルネットワークの入出力分布を正確に特徴付けるために,サンプルフリーモーメント伝搬法を提案する。
この手法の鍵となる有効性は、非線形活性化関数を通した確率変数の共分散に対する解析解である。
学習ニューラルネットワークの入力出力分布を分析し,ベイズニューラルネットワークを訓練する実験において,提案手法の適用性およびメリットを示す。
論文 参考訳(メタデータ) (2024-03-24T14:08:24Z) - Online Network Source Optimization with Graph-Kernel MAB [62.6067511147939]
大規模ネットワークにおける最適なソース配置をオンラインで学習するためのグラフカーネルマルチアームバンディットアルゴリズムであるGrab-UCBを提案する。
適応グラフ辞書モデルを用いて,ネットワークプロセスを記述する。
我々は、ネットワークパラメータに依存する性能保証を導出し、シーケンシャルな意思決定戦略の学習曲線にさらに影響を及ぼす。
論文 参考訳(メタデータ) (2023-07-07T15:03:42Z) - The Cascaded Forward Algorithm for Neural Network Training [61.06444586991505]
本稿では,ニューラルネットワークのための新しい学習フレームワークであるCascaded Forward(CaFo)アルゴリズムを提案する。
FFとは異なり、我々のフレームワークは各カスケードブロックのラベル分布を直接出力する。
我々のフレームワークでは、各ブロックは独立して訓練できるので、並列加速度システムに容易に展開できる。
論文 参考訳(メタデータ) (2023-03-17T02:01:11Z) - Lifted Bregman Training of Neural Networks [28.03724379169264]
本稿では,(潜在的に非滑らかな)近位写像を活性化関数として,フィードフォワードニューラルネットワークのトレーニングのための新しい数学的定式化を導入する。
この定式化はBregmanに基づいており、ネットワークのパラメータに関する偏微分がネットワークのアクティベーション関数の微分の計算を必要としないという利点がある。
ニューラルネットワークに基づく分類器のトレーニングや、スパースコーディングによる(デノーミング)オートエンコーダのトレーニングには、これらのトレーニングアプローチが等しく適しているか、さらに適していることを示す数値的な結果がいくつか提示される。
論文 参考訳(メタデータ) (2022-08-18T11:12:52Z) - Scalable computation of prediction intervals for neural networks via
matrix sketching [79.44177623781043]
既存の不確実性推定アルゴリズムでは、モデルアーキテクチャとトレーニング手順を変更する必要がある。
本研究では、与えられたトレーニングされたニューラルネットワークに適用し、近似予測間隔を生成できる新しいアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-05-06T13:18:31Z) - Neural Network Training with Asymmetric Crosspoint Elements [1.0773924713784704]
実用的な抵抗装置の非対称コンダクタンス変調は、従来のアルゴリズムで訓練されたネットワークの分類を著しく劣化させる。
ここでは、ハミルトニアン Descent という代替の完全並列トレーニングアルゴリズムを記述し、実験的に示す。
我々は、なぜデバイス非対称性が従来のトレーニングアルゴリズムと根本的に相容れないのか、新しいアプローチがどのようにそれを有用な機能として利用するのか、という批判的な直感を提供する。
論文 参考訳(メタデータ) (2022-01-31T17:41:36Z) - Learning Neural Network Subspaces [74.44457651546728]
近年の観測は,ニューラルネットワーク最適化の展望の理解を深めている。
1つのモデルのトレーニングと同じ計算コストで、高精度ニューラルネットワークの線、曲線、単純軸を学習します。
1つのモデルのトレーニングと同じ計算コストで、高精度ニューラルネットワークの線、曲線、単純軸を学習します。
論文 参考訳(メタデータ) (2021-02-20T23:26:58Z) - Adaptive Serverless Learning [114.36410688552579]
本研究では,データから学習率を動的に計算できる適応型分散学習手法を提案する。
提案アルゴリズムは, 作業者数に対して線形高速化が可能であることを示す。
通信効率のオーバーヘッドを低減するため,通信効率のよい分散訓練手法を提案する。
論文 参考訳(メタデータ) (2020-08-24T13:23:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。