論文の概要: Robust Planning with Compound LLM Architectures: An LLM-Modulo Approach
- arxiv url: http://arxiv.org/abs/2411.14484v1
- Date: Wed, 20 Nov 2024 02:04:09 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-25 15:04:12.852773
- Title: Robust Planning with Compound LLM Architectures: An LLM-Modulo Approach
- Title(参考訳): 複合LLMアーキテクチャによるロバストプランニング:LLM-Moduloアプローチ
- Authors: Atharva Gundawar, Karthik Valmeekam, Mudit Verma, Subbarao Kambhampati,
- Abstract要約: 以前の作業では、計画とスケジューリングタスクにおいて、LLM(Large Language Model)のパフォーマンスを向上しようと試みていた。
LLM-Modulo フレームワークを用いた複合 LLM アーキテクチャの技術的評価を行う。
- 参考スコア(独自算出の注目度): 17.888087571630933
- License:
- Abstract: Previous work has attempted to boost Large Language Model (LLM) performance on planning and scheduling tasks through a variety of prompt engineering techniques. While these methods can work within the distributions tested, they are neither robust nor predictable. This limitation can be addressed through compound LLM architectures where LLMs work in conjunction with other components to ensure reliability. In this paper, we present a technical evaluation of a compound LLM architecture--the LLM-Modulo framework. In this framework, an LLM is paired with a complete set of sound verifiers that validate its output, re-prompting it if it fails. This approach ensures that the system can never output any fallacious output, and therefore that every output generated is guaranteed correct--something previous techniques have not been able to claim. Our results, evaluated across four scheduling domains, demonstrate significant performance gains with the LLM-Modulo framework using various models. Additionally, we explore modifications to the base configuration of the framework and assess their impact on overall system performance.
- Abstract(参考訳): これまでの作業では、さまざまなプロンプトエンジニアリング技術を通じて、タスクの計画とスケジューリングにおけるLLM(Large Language Model)のパフォーマンスを向上しようと試みてきた。
これらのメソッドはテスト対象のディストリビューション内で動作可能だが、堅牢でも予測可能でもない。
この制限は、LLMが他のコンポーネントと連携して動作し、信頼性を確保する複合LLMアーキテクチャによって対処できる。
本稿では,複合LLMアーキテクチャ,すなわちLLM-Moduloフレームワークの技術的評価を行う。
このフレームワークでは、LLMは出力を検証する完全な音響検証器のセットとペアリングされ、失敗すると再試行される。
このアプローチは、システムが誤った出力を決して出力できないことを保証するため、生成されたすべての出力が正しいことを保証します。
提案手法は4つのスケジューリング領域で評価され,様々なモデルを用いたLLM-Moduloフレームワークによる性能向上を示す。
さらに、フレームワークの基本構成の変更を検討し、システム全体のパフォーマンスへの影響を評価します。
関連論文リスト
- RAC: Efficient LLM Factuality Correction with Retrieval Augmentation [8.207682890286957]
大規模言語モデル(LLM)は、広範囲の自然言語処理(NLP)タスクにおいて印象的な結果を示すが、しばしば事実的に誤った出力を生成することができる。
本稿では,簡単な低遅延後補正手法である textbfRetrieval Augmented Correction (RAC) を提案する。
論文 参考訳(メタデータ) (2024-10-21T06:11:38Z) - Performance Law of Large Language Models [58.32539851241063]
性能法則は、LLMアーキテクチャの選択と計算資源の効率的な割り当てを導くために用いられる。
性能法則は、LLMアーキテクチャの選択と計算資源の効率的な割り当てを広範な実験なしで導くのに利用できる。
論文 参考訳(メタデータ) (2024-08-19T11:09:12Z) - From Words to Actions: Unveiling the Theoretical Underpinnings of LLM-Driven Autonomous Systems [59.40480894948944]
大規模言語モデル (LLM) は、物理世界の意思決定問題を解くことができる。
このモデルの下で、LLM Plannerは、プロンプトを介して言語ベースのサブゴールを反復的に生成することにより、部分的に観測可能なマルコフ決定プロセス(POMDP)をナビゲートする。
我々は,事前学習したLLMプランナーが,文脈内学習を通じてベイズ的集計模倣学習(BAIL)を効果的に行うことを証明した。
論文 参考訳(メタデータ) (2024-05-30T09:42:54Z) - RouterBench: A Benchmark for Multi-LLM Routing System [25.515453832224804]
パフォーマンスとコストのバランスをとる場合、すべてのタスクやアプリケーションに最適に対処できるモデルは存在しない。
この制限により、個々のLSMの制約を克服するために、様々なモデルの強みを組み合わせたLSMルーティングシステムの開発に繋がった。
本稿では LLM ルーティングシステムの有効性を体系的に評価する新しい評価フレームワークである RouterBench を提案する。
論文 参考訳(メタデータ) (2024-03-18T17:59:04Z) - Knowledge Fusion of Large Language Models [73.28202188100646]
本稿では,大規模言語モデル(LLM)における知識融合の概念を紹介する。
我々は、それらの集合的知識と独特な強みを外部化し、それによってターゲットモデルの能力が、どのソースLLMよりも高められるようにします。
この結果から,LLMの融合により,推論やコモンセンス,コード生成など,対象モデルの性能が向上することが確認された。
論文 参考訳(メタデータ) (2024-01-19T05:02:46Z) - Assessing the Reliability of Large Language Model Knowledge [78.38870272050106]
大規模言語モデル(LLM)は、知識探索タスクにおける高い性能のため、知識ベースとして扱われてきた。
LLMが実際に正しい答えを連続的に生成する能力をどのように評価するか。
LLMの信頼性を直接測定するための新しい指標であるMOdel kNowledge relIabiliTy score (MONITOR)を提案する。
論文 参考訳(メタデータ) (2023-10-15T12:40:30Z) - FederatedScope-LLM: A Comprehensive Package for Fine-tuning Large
Language Models in Federated Learning [70.38817963253034]
本稿では, ファインチューニング LLM のこれらの課題について論じ, 本パッケージ FS-LLM を主な貢献として紹介する。
我々は、FLシナリオにおける将来の拡張のために、包括的フェデレーションパラメータ効率の良い微調整アルゴリズムの実装と汎用プログラミングインタフェースを提供する。
本研究では, FS-LLM の有効性を検証し, FL 設定におけるパラメータ効率の高いパラメータ調整アルゴリズムを用いて, 高度な LLM のベンチマークを行う。
論文 参考訳(メタデータ) (2023-09-01T09:40:36Z) - Response Length Perception and Sequence Scheduling: An LLM-Empowered LLM
Inference Pipeline [22.08897444328099]
大規模言語モデル(LLM)はAIの分野に革命をもたらし、様々なタスクで前例のない能力を示している。
本稿では,LLMのパワーを利用する効率的なLLM推論パイプラインを提案する。
論文 参考訳(メタデータ) (2023-05-22T15:36:06Z) - LLM-Pruner: On the Structural Pruning of Large Language Models [65.02607075556742]
大規模言語モデル(LLM)は、言語理解と生成において顕著な能力を示している。
タスク非依存であり、元のトレーニングデータセットへの依存を最小限に抑えるという2つの制約の範囲内でLLMの圧縮に取り組む。
LLM-Prunerという名前のこの手法は、非臨界結合構造を選択的に除去する構造プルーニングを採用する。
論文 参考訳(メタデータ) (2023-05-19T12:10:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。