論文の概要: TuRTLe: A Unified Evaluation of LLMs for RTL Generation
- arxiv url: http://arxiv.org/abs/2504.01986v1
- Date: Mon, 31 Mar 2025 07:43:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-04 12:55:37.832850
- Title: TuRTLe: A Unified Evaluation of LLMs for RTL Generation
- Title(参考訳): TuRTLe: RTL生成のためのLLMの統一評価
- Authors: Dario Garcia-Gasulla, Gokcen Kestor, Emanuele Parisi, Miquel Albert'i-Binimelis, Cristian Gutierrez, Razine Moundir Ghorab, Orlando Montenegro, Bernat Homs, Miquel Moreto,
- Abstract要約: 本研究では,主要なRTL生成タスク間でLLMを評価するための統合評価フレームワークTuRTLeを提案する。
オープンLLMの多様なセットをベンチマークし、EDA固有のタスクの長所と短所を分析します。
以上の結果から,DeepSeek R1のような推論モデルの方が,複数の評価基準で常に優れていたことが示唆された。
- 参考スコア(独自算出の注目度): 0.6010802600885173
- License:
- Abstract: The rapid advancements in LLMs have driven the adoption of generative AI in various domains, including Electronic Design Automation (EDA). Unlike traditional software development, EDA presents unique challenges, as generated RTL code must not only be syntactically correct and functionally accurate but also synthesizable by hardware generators while meeting performance, power, and area constraints. These additional requirements introduce complexities that existing code-generation benchmarks often fail to capture, limiting their effectiveness in evaluating LLMs for RTL generation. To address this gap, we propose TuRTLe, a unified evaluation framework designed to systematically assess LLMs across key RTL generation tasks. TuRTLe integrates multiple existing benchmarks and automates the evaluation process, enabling a comprehensive assessment of LLM performance in syntax correctness, functional correctness, synthesis, PPA optimization, and exact line completion. Using this framework, we benchmark a diverse set of open LLMs and analyze their strengths and weaknesses in EDA-specific tasks. Our results show that reasoning-based models, such as DeepSeek R1, consistently outperform others across multiple evaluation criteria, but at the cost of increased computational overhead and inference latency. Additionally, base models are better suited in module completion tasks, while instruct-tuned models perform better in specification-to-RTL tasks.
- Abstract(参考訳): LLMの急速な進歩は、Electronic Design Automation(EDA)など、さまざまな領域における生成AIの採用を促している。
従来のソフトウェア開発とは異なり、EDAは、生成したRTLコードは構文的に正確かつ機能的に正確であるだけでなく、性能、パワー、領域の制約を満たしながらハードウェアジェネレータによって合成可能である必要があるため、固有の課題を提示している。
これらの追加要件は、既存のコード生成ベンチマークがキャプチャーに失敗することが多い複雑さを導入し、RTL生成のためのLLMの評価の有効性を制限している。
このギャップに対処するために,主要なRTL生成タスク間でLLMを体系的に評価する統合評価フレームワークTuRTLeを提案する。
TuRTLeは、複数の既存のベンチマークを統合し、評価プロセスを自動化することで、構文の正確性、機能的正確性、合成、PPA最適化、正確なライン補完におけるLLM性能の包括的な評価を可能にする。
このフレームワークを用いて、多様なオープンLCMのベンチマークを行い、EDA固有のタスクの長所と短所を分析します。
以上の結果から,DeepSeek R1のような推論モデルでは,計算オーバーヘッドや推論遅延の増大などにより,複数の評価基準を一貫して上回る結果が得られた。
さらに、ベースモデルはモジュール完了タスクに適しており、インストラクション調整されたモデルは仕様からRTLタスクに適しています。
関連論文リスト
- LLM2: Let Large Language Models Harness System 2 Reasoning [65.89293674479907]
大規模言語モデル(LLM)は、無数のタスクにまたがって印象的な機能を示してきたが、時には望ましくない出力が得られる。
本稿では LLM とプロセスベースの検証器を組み合わせた新しいフレームワーク LLM2 を紹介する。
LLMs2は妥当な候補を生成するのに責任を持ち、検証者は望ましい出力と望ましくない出力を区別するためにタイムリーなプロセスベースのフィードバックを提供する。
論文 参考訳(メタデータ) (2024-12-29T06:32:36Z) - A Real-World Benchmark for Evaluating Fine-Grained Issue Solving Capabilities of Large Language Models [11.087034068992653]
FAUN-Eval は LLM の Fine-grAined issUe solviNg 機能を評価するために特別に設計されたベンチマークである。
30の有名なGitHubリポジトリからキュレートされたデータセットを使って構築されている。
FAUN-Evalでは,4つのクローズドソースモデルと6つのオープンソースモデルを含む10個のLLMを評価した。
論文 参考訳(メタデータ) (2024-11-27T03:25:44Z) - FVEval: Understanding Language Model Capabilities in Formal Verification of Digital Hardware [4.480157114854711]
FVEvalは,形式的検証(FV)に関わるタスクにおいて,大規模言語モデル(LLM)のパフォーマンスを特徴付ける最初の総合ベンチマークである。
ベンチマークは3つのサブタスクで構成され、異なるレベルでLLM能力を測定する。
本稿では,FVに整合した合成例を生成するための,専門家による検証手法と手法のコレクションについて述べる。
論文 参考訳(メタデータ) (2024-10-15T21:48:57Z) - RGD: Multi-LLM Based Agent Debugger via Refinement and Generation Guidance [0.6062751776009752]
大規模言語モデル(LLM)は、コード生成タスクにおいて驚くべきポテンシャルを示しています。
LLMはタスク記述に基づいてコードを生成することができるが、精度は限られている。
コード生成と自動デバッグのためのLLMエージェントの新しいアーキテクチャ:Refinement and Guidancebug (RGD)を紹介する。
RGDはコード生成タスクを複数のステップに分割し、より明確なワークフローを確保し、自己回帰とフィードバックに基づいた反復的なコード改善を可能にする。
論文 参考訳(メタデータ) (2024-10-02T05:07:02Z) - Reference Trustable Decoding: A Training-Free Augmentation Paradigm for Large Language Models [79.41139393080736]
大規模言語モデル(LLM)は急速に進歩し、印象的な機能を示している。
In-Context Learning (ICL) など。
効率的なファインチューニング(PEFT)は、現在2つの主要な拡張方法である。
下流タスクへのLLM。
我々は、モデルが微調整なしで新しいタスクに迅速に適応できるパラダイムである参照信頼復号(RTD)を提案する。
論文 参考訳(メタデータ) (2024-09-30T10:48:20Z) - AIvril: AI-Driven RTL Generation With Verification In-The-Loop [0.7831852829409273]
LLM(Large Language Models)は、複雑な自然言語処理タスクを実行できる計算モデルである。
本稿では,RTL対応LLMの精度と信頼性を高めるためのフレームワークであるAIvrilを紹介する。
論文 参考訳(メタデータ) (2024-09-03T15:07:11Z) - SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning [70.21358720599821]
大規模言語モデル(LLM)は、適切な自然言語プロンプトを提供する際に、多様なタスクを解決するという約束を持っている。
学生LLMからタスク固有の入出力ペアを合成する多段階メカニズムであるSELF-GUIDEを提案する。
ベンチマークの指標から,分類タスクに約15%,生成タスクに18%の絶対的な改善を報告した。
論文 参考訳(メタデータ) (2024-07-16T04:41:58Z) - LLM-ARC: Enhancing LLMs with an Automated Reasoning Critic [2.1073328551105623]
LLM-ARCは,Large Language Models (LLM) の論理的推論能力を高めるために設計された,ニューロシンボリックなフレームワークである。
LLM-ARC は Actor-Critic 方式を採用しており、LLM アクターは宣言論理プログラムと意味的正当性テストを生成し、Automated Reasoning Critic はコードを評価し、テストを実行し、反復的洗練のためのテスト失敗に対するフィードバックを提供する。
実験では,LLMのみのベースラインよりも大幅に改善され,論理的テスト生成と反復的自己精製の重要性が強調された。
論文 参考訳(メタデータ) (2024-06-25T15:52:15Z) - DARG: Dynamic Evaluation of Large Language Models via Adaptive Reasoning Graph [70.79413606968814]
本稿では,適応推論グラフ展開(DARG)によるLCMの動的評価を導入し,複雑性と多様性を制御した現在のベンチマークを動的に拡張する。
具体的には、まず現在のベンチマークでデータポイントの推論グラフを抽出し、それから推論グラフを摂動させて新しいテストデータを生成する。
このような新しく生成されたテストサンプルは、元のベンチマークと同様の言語的多様性を維持しながら、複雑さのレベルが異なる可能性がある。
論文 参考訳(メタデータ) (2024-06-25T04:27:53Z) - An Embarrassingly Simple Approach for LLM with Strong ASR Capacity [56.30595787061546]
我々は,音声基礎エンコーダと大規模言語モデル(LLM)を用いて,音声処理の分野で最も重要な課題の1つを解決することに注力する。
最近の研究は、音声エンコーダの出力を時間的に圧縮したり、プロジェクタのモーダルアライメントに対処したり、LLMのパラメータ効率の良い微調整を利用するといった複雑な設計をしている。
そこで本研究では,市販の音声エンコーダLLMと,トレーニング可能な唯一の線形プロジェクタの単純な構成がASRタスクに適しているのに対して,繊細な設計は必要ないことを発見した。
論文 参考訳(メタデータ) (2024-02-13T23:25:04Z) - FederatedScope-LLM: A Comprehensive Package for Fine-tuning Large
Language Models in Federated Learning [70.38817963253034]
本稿では, ファインチューニング LLM のこれらの課題について論じ, 本パッケージ FS-LLM を主な貢献として紹介する。
我々は、FLシナリオにおける将来の拡張のために、包括的フェデレーションパラメータ効率の良い微調整アルゴリズムの実装と汎用プログラミングインタフェースを提供する。
本研究では, FS-LLM の有効性を検証し, FL 設定におけるパラメータ効率の高いパラメータ調整アルゴリズムを用いて, 高度な LLM のベンチマークを行う。
論文 参考訳(メタデータ) (2023-09-01T09:40:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。