Capacity-Achieving Entanglement Purification Protocol for Pauli Dephasing Channel
- URL: http://arxiv.org/abs/2411.14573v1
- Date: Thu, 21 Nov 2024 20:41:16 GMT
- Title: Capacity-Achieving Entanglement Purification Protocol for Pauli Dephasing Channel
- Authors: Ozlem Erkilic, Matthew S. Winnel, Aritra Das, Sebastian Kish, Ping Koy Lam, Jie Zhao, Syed M. Assad,
- Abstract summary: A simple entanglement swapping protocol via a central node is not effective against the Pauli dephasing channel.
This highlights the importance of purifying distributed Bell states before performing entanglement swapping.
We introduce an entanglement purification protocol assisted by two-way classical communication that not only purifies the states but also achieves the channel capacities.
- Score: 1.6632263048576381
- License:
- Abstract: Quantum communication facilitates the secure transmission of information and the distribution of entanglement, but the rates at which these tasks can be achieved are fundamentally constrained by the capacities of quantum channels. Although quantum repeaters typically enhance these rates by mitigating losses and noise, a simple entanglement swapping protocol via a central node is not effective against the Pauli dephasing channel due to the additional degradation introduced by Bell-state measurements. This highlights the importance of purifying distributed Bell states before performing entanglement swapping. In this work, we introduce an entanglement purification protocol assisted by two-way classical communication that not only purifies the states but also achieves the channel capacities. Our protocol uses an iterative process involving CNOT gates and Hadamard basis measurements, progressively increasing the fidelity of Bell states with each iteration. This process ensures that the resulting Bell pairs are perfect in the limit of many recursive iterations, making them ideal for use in quantum repeaters and for correcting dephasing errors in quantum computers. The explicit circuit we propose is versatile and applicable to any number of Bell pairs, offering a practical solution for mitigating decoherence in quantum networks and distributed quantum computing.
Related papers
- Boosting end-to-end entanglement fidelity in quantum repeater networks via hybridized strategies [0.6123149401802668]
Quantum networks are expected to enhance distributed quantum computing and quantum communication over long distances.
We show that a quantum network utilizing only entanglement purification or only quantum error correction as error management strategies cannot create Bell pairs with fidelity that exceeds the requirement for a secured quantum key distribution protocol for a broad range of hardware parameters.
arXiv Detail & Related papers (2024-05-16T07:38:17Z) - Simple loss-tolerant protocol for GHZ-state distribution in a quantum network [0.0]
We propose a simple loss-tolerant protocol for the Greenberger-Horne-Zeilinger state distribution.
Our protocol does not use quantum repeaters and is achievable with current quantum optics technology.
arXiv Detail & Related papers (2024-04-30T11:16:37Z) - Near-Term Distributed Quantum Computation using Mean-Field Corrections
and Auxiliary Qubits [77.04894470683776]
We propose near-term distributed quantum computing that involve limited information transfer and conservative entanglement production.
We build upon these concepts to produce an approximate circuit-cutting technique for the fragmented pre-training of variational quantum algorithms.
arXiv Detail & Related papers (2023-09-11T18:00:00Z) - Hybrid Error-Management Strategies in Quantum Repeater Networks [0.7036032466145112]
We address the performance of a quantum network capable of quantum error correction and entanglement purification.
Results show that one should distribute Bell pairs as fast as possible while balancing the deployment of fidelity enhancement.
arXiv Detail & Related papers (2023-03-18T00:26:01Z) - Suppressing Amplitude Damping in Trapped Ions: Discrete Weak
Measurements for a Non-unitary Probabilistic Noise Filter [62.997667081978825]
We introduce a low-overhead protocol to reverse this degradation.
We present two trapped-ion schemes for the implementation of a non-unitary probabilistic filter against amplitude damping noise.
This filter can be understood as a protocol for single-copy quasi-distillation.
arXiv Detail & Related papers (2022-09-06T18:18:41Z) - Achieving the ultimate end-to-end rates of lossy quantum communication
networks [0.0]
In this work, we give a practical design for an optimal entanglement distillation protocol followed by teleportation.
Our ultimate design is an iterative approach, where each purification step operates on shared entangled states.
As a simpler design, we show that the first round of iteration can purify completely at high rates.
arXiv Detail & Related papers (2022-03-25T22:02:32Z) - Interactive Protocols for Classically-Verifiable Quantum Advantage [46.093185827838035]
"Interactions" between a prover and a verifier can bridge the gap between verifiability and implementation.
We demonstrate the first implementation of an interactive quantum advantage protocol, using an ion trap quantum computer.
arXiv Detail & Related papers (2021-12-09T19:00:00Z) - Towards fully-fledged quantum and classical communication over deployed
fiber with up-conversion module [47.187609203210705]
We propose and demonstrate a new method, based on up-conversion assisted receiver, for co-propagating classical light and QKD signals.
Our proposal exhibits higher tolerance for noise in comparison to the standard receiver, thus enabling the distribution of secret keys in the condition of 4 dB-higher classical power.
arXiv Detail & Related papers (2021-06-09T13:52:27Z) - Direct Quantum Communications in the Presence of Realistic Noisy
Entanglement [69.25543534545538]
We propose a novel quantum communication scheme relying on realistic noisy pre-shared entanglement.
Our performance analysis shows that the proposed scheme offers competitive QBER, yield, and goodput.
arXiv Detail & Related papers (2020-12-22T13:06:12Z) - All-Optical Long-Distance Quantum Communication with
Gottesman-Kitaev-Preskill qubits [0.0]
Quantum repeaters are a promising platform for realizing long-distance quantum communication.
In this work, we consider implementing a quantum repeater protocol using Gottesman-Kitaev-Preskill qubits.
arXiv Detail & Related papers (2020-11-30T15:14:34Z) - Fault-tolerant Coding for Quantum Communication [71.206200318454]
encode and decode circuits to reliably send messages over many uses of a noisy channel.
For every quantum channel $T$ and every $eps>0$ there exists a threshold $p(epsilon,T)$ for the gate error probability below which rates larger than $C-epsilon$ are fault-tolerantly achievable.
Our results are relevant in communication over large distances, and also on-chip, where distant parts of a quantum computer might need to communicate under higher levels of noise.
arXiv Detail & Related papers (2020-09-15T15:10:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.