Simple loss-tolerant protocol for GHZ-state distribution in a quantum network
- URL: http://arxiv.org/abs/2404.19458v3
- Date: Sun, 16 Jun 2024 06:29:49 GMT
- Title: Simple loss-tolerant protocol for GHZ-state distribution in a quantum network
- Authors: Hikaru Shimizu, Wojciech Roga, David Elkouss, Masahiro Takeoka,
- Abstract summary: We propose a simple loss-tolerant protocol for the Greenberger-Horne-Zeilinger state distribution.
Our protocol does not use quantum repeaters and is achievable with current quantum optics technology.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Distributed quantum entanglement plays a crucial role in realizing networks that connect quantum devices. However, sharing entanglement between distant nodes by means of photons is a challenging process primary due to unavoidable losses in the linking channels. In this paper, we propose a simple loss-tolerant protocol for the Greenberger-Horne-Zeilinger state distribution. We analyze the distribution rate under feasible experimental conditions and demonstrate the advantages of rate-loss scaling with respect to direct transmission. Our protocol does not use quantum repeaters and is achievable with current quantum optics technology. The result has direct application to tasks such as conference key agreement or distributed sensing. Moreover, it reduces the requirements for implementing distributed quantum error correction codes such as the surface code.
Related papers
- Capacity-Achieving Entanglement Purification Protocol for Pauli Dephasing Channel [1.6632263048576381]
A simple entanglement swapping protocol via a central node is not effective against the Pauli dephasing channel.
This highlights the importance of purifying distributed Bell states before performing entanglement swapping.
We introduce an entanglement purification protocol assisted by two-way classical communication that not only purifies the states but also achieves the channel capacities.
arXiv Detail & Related papers (2024-11-21T20:41:16Z) - Guarantees on the structure of experimental quantum networks [105.13377158844727]
Quantum networks connect and supply a large number of nodes with multi-party quantum resources for secure communication, networked quantum computing and distributed sensing.
As these networks grow in size, certification tools will be required to answer questions regarding their properties.
We demonstrate a general method to guarantee that certain correlations cannot be generated in a given quantum network.
arXiv Detail & Related papers (2024-03-04T19:00:00Z) - Near-Term Distributed Quantum Computation using Mean-Field Corrections
and Auxiliary Qubits [77.04894470683776]
We propose near-term distributed quantum computing that involve limited information transfer and conservative entanglement production.
We build upon these concepts to produce an approximate circuit-cutting technique for the fragmented pre-training of variational quantum algorithms.
arXiv Detail & Related papers (2023-09-11T18:00:00Z) - The Quantum Internet: an Efficient Stabilizer states Distribution Scheme [0.0]
Quantum networks constitute a major part of quantum technologies.
They will boost quantum computing drastically by providing a scalable modular architecture of quantum chips.
They will provide the backbone of the future quantum internet, allowing for high margins of security.
arXiv Detail & Related papers (2023-05-04T08:53:38Z) - Reliable Quantum Communications based on Asymmetry in Distillation and Coding [35.693513369212646]
We address the problem of reliable provision of entangled qubits in quantum computing schemes.
We combine indirect transmission based on teleportation and distillation; (2) direct transmission, based on quantum error correction (QEC)
Our results show that ad-hoc asymmetric codes give, compared to conventional QEC, a performance boost and codeword size reduction both in a single link and in a quantum network scenario.
arXiv Detail & Related papers (2023-05-01T17:13:23Z) - Multi-User Entanglement Distribution in Quantum Networks Using Multipath
Routing [55.2480439325792]
We propose three protocols that increase the entanglement rate of multi-user applications by leveraging multipath routing.
The protocols are evaluated on quantum networks with NISQ constraints, including limited quantum memories and probabilistic entanglement generation.
arXiv Detail & Related papers (2023-03-06T18:06:00Z) - Breaking universal limitations on quantum conference key agreement
without quantum memory [6.300599548850421]
We report a measurement-device-independent quantum conference key agreement protocol with enhanced transmission efficiency over lossy channel.
Our protocol can break key rate bounds on quantum communication over quantum network without quantum memory.
Based on our results, we anticipate that our protocol will play an indispensable role in constructing multipartite quantum network.
arXiv Detail & Related papers (2022-12-10T06:37:53Z) - Hardware-Efficient, Fault-Tolerant Quantum Computation with Rydberg
Atoms [55.41644538483948]
We provide the first complete characterization of sources of error in a neutral-atom quantum computer.
We develop a novel and distinctly efficient method to address the most important errors associated with the decay of atomic qubits to states outside of the computational subspace.
Our protocols can be implemented in the near-term using state-of-the-art neutral atom platforms with qubits encoded in both alkali and alkaline-earth atoms.
arXiv Detail & Related papers (2021-05-27T23:29:53Z) - Entangling Quantum Generative Adversarial Networks [53.25397072813582]
We propose a new type of architecture for quantum generative adversarial networks (entangling quantum GAN, EQ-GAN)
We show that EQ-GAN has additional robustness against coherent errors and demonstrate the effectiveness of EQ-GAN experimentally in a Google Sycamore superconducting quantum processor.
arXiv Detail & Related papers (2021-04-30T20:38:41Z) - Direct Quantum Communications in the Presence of Realistic Noisy
Entanglement [69.25543534545538]
We propose a novel quantum communication scheme relying on realistic noisy pre-shared entanglement.
Our performance analysis shows that the proposed scheme offers competitive QBER, yield, and goodput.
arXiv Detail & Related papers (2020-12-22T13:06:12Z) - All-Optical Long-Distance Quantum Communication with
Gottesman-Kitaev-Preskill qubits [0.0]
Quantum repeaters are a promising platform for realizing long-distance quantum communication.
In this work, we consider implementing a quantum repeater protocol using Gottesman-Kitaev-Preskill qubits.
arXiv Detail & Related papers (2020-11-30T15:14:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.