論文の概要: Predictive Analytics of Air Alerts in the Russian-Ukrainian War
- arxiv url: http://arxiv.org/abs/2411.14625v1
- Date: Thu, 21 Nov 2024 22:58:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-25 15:04:45.790047
- Title: Predictive Analytics of Air Alerts in the Russian-Ukrainian War
- Title(参考訳): ロシア・ウクライナ戦争におけるエアアラートの予測分析
- Authors: Demian Pavlyshenko, Bohdan Pavlyshenko,
- Abstract要約: 本稿は、2022年2月24日に起きたロシア・ウクライナ戦争における航空警報の探索的データ分析と予測分析のアプローチについて考察する。
その結果、地域内のアラートは相互に相関し、地理空間パターンを持ち、予測モデルを構築することが可能であることが示された。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: The paper considers exploratory data analysis and approaches in predictive analytics for air alerts during the Russian-Ukrainian war which broke out on Feb 24, 2022. The results illustrate that alerts in regions correlate with one another and have geospatial patterns which make it feasible to build a predictive model which predicts alerts that are expected to take place in a certain region within a specified time period. The obtained results show that the alert status in a particular region is highly dependable on the features of its adjacent regions. Seasonality features like hours, days of a week and months are also crucial in predicting the target variable. Some regions highly rely on the time feature which equals to a number of days from the initial date of the dataset. From this, we can deduce that the air alert pattern changes throughout the time.
- Abstract(参考訳): 本稿は、2022年2月24日に起きたロシア・ウクライナ戦争における航空警報の探索的データ分析と予測分析のアプローチについて考察する。
その結果、地域内のアラートは相互に関連し、特定の時間内に特定の地域で発生すると予測されるアラートを予測する予測モデルを構築することが可能な地理空間パターンを持つことがわかった。
その結果,特定領域の警報状況は,隣接領域の特徴に大きく依存していることが判明した。
時間、週、月などの季節的特徴も、ターゲット変数を予測する上で重要である。
一部のリージョンでは、データセットの初期日時から数日間に相当する時間機能に強く依存している。
このことから、空気警報パターンは時間とともに変化すると推測できる。
関連論文リスト
- FengWu-W2S: A deep learning model for seamless weather-to-subseasonal forecast of global atmosphere [53.22497376154084]
本研究では,FengWuグローバル気象予報モデルに基づくFengWu-Weather to Subseasonal (FengWu-W2S)を提案する。
我々は,FengWu-W2Sが大気環境を3~6週間先まで確実に予測し,マデン・ジュリア振動 (MJO) や北大西洋振動 (NAO) などの地球表面温度, 降水量, 地磁気高度, 季節内信号の予測能力を向上させることを実証した。
日時から季節時の予測誤差成長に関するアブレーション実験
論文 参考訳(メタデータ) (2024-11-15T13:44:37Z) - Generating Fine-Grained Causality in Climate Time Series Data for Forecasting and Anomaly Detection [67.40407388422514]
我々は、TBN Granger Causalityという概念的微粒因果モデルを設計する。
次に, TBN Granger Causality を生成的に発見する TacSas という, エンドツーエンドの深部生成モデルを提案する。
気候予報のための気候指標ERA5と、極度気象警報のためのNOAAの極端気象基準でTacSasを試験する。
論文 参考訳(メタデータ) (2024-08-08T06:47:21Z) - Spatial-temporal Forecasting for Regions without Observations [13.805203053973772]
本研究では,歴史的観察を伴わない関心領域の時空間予測について検討した。
タスクに対してSTSMというモデルを提案する。
私たちの重要な洞察は、関心のある領域に類似している場所から学ぶことです。
論文 参考訳(メタデータ) (2024-01-19T06:26:05Z) - Distribution-Free Conformal Joint Prediction Regions for Neural Marked Temporal Point Processes [4.324839843326325]
我々は、共形予測の枠組みを用いて、ニューラルTPPモデルにおける不確実性に対するより信頼性の高い手法を開発した。
主な目的は、イベントの到着時刻とマークに対する分布自由な共同予測領域を生成し、有限サンプルの限界カバレッジを保証することである。
論文 参考訳(メタデータ) (2024-01-09T15:28:29Z) - Association rule mining with earthquake data collected from Turkiye
region [0.0]
この研究は、過去5年間にテュルクアイ地方で記録された地震に関する最も顕著な関連ルールを提示する。
その結果,様々な距離の地域から記録された事象に対する統計的推測が得られた。
論文 参考訳(メタデータ) (2023-12-26T18:36:01Z) - Performative Time-Series Forecasting [71.18553214204978]
我々は,機械学習の観点から,パフォーマンス時系列予測(PeTS)を定式化する。
本稿では,予測分布シフトに対する遅延応答の概念を活用する新しい手法であるFeature Performative-Shifting(FPS)を提案する。
新型コロナウイルスの複数の時系列モデルと交通予報タスクを用いた総合的な実験を行った。
論文 参考訳(メタデータ) (2023-10-09T18:34:29Z) - Joint Forecasting of Panoptic Segmentations with Difference Attention [72.03470153917189]
シーン内の全てのオブジェクトを共同で予測する新しいパノプティックセグメンテーション予測モデルについて検討する。
提案したモデルをCityscapesとAIODriveデータセット上で評価する。
論文 参考訳(メタデータ) (2022-04-14T17:59:32Z) - Deep Autoregressive Models with Spectral Attention [74.08846528440024]
本稿では,深部自己回帰モデルとスペクトル注意(SA)モジュールを組み合わせた予測アーキテクチャを提案する。
時系列の埋め込みをランダムなプロセスの発生としてスペクトル領域に特徴付けることにより,グローバルな傾向と季節パターンを同定することができる。
時系列に対するグローバルとローカルの2つのスペクトルアテンションモデルは、この情報を予測の中に統合し、スペクトルフィルタリングを行い、時系列のノイズを除去する。
論文 参考訳(メタデータ) (2021-07-13T11:08:47Z) - A generative adversarial network approach to (ensemble) weather
prediction [91.3755431537592]
本研究では,500hPaの圧力レベル,2m温度,24時間の総降水量を予測するために,条件付き深部畳み込み生成対向ネットワークを用いた。
提案されたモデルは、2019年に関連する気象分野を予測することを目的として、2015年から2018年までの4年間のERA5の再分析データに基づいて訓練されている。
論文 参考訳(メタデータ) (2020-06-13T20:53:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。