論文の概要: Probing Ranking LLMs: Mechanistic Interpretability in Information Retrieval
- arxiv url: http://arxiv.org/abs/2410.18527v1
- Date: Thu, 24 Oct 2024 08:20:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-25 12:49:00.102902
- Title: Probing Ranking LLMs: Mechanistic Interpretability in Information Retrieval
- Title(参考訳): ランキングLLMの探索:情報検索における機械論的解釈可能性
- Authors: Tanya Chowdhury, James Allan,
- Abstract要約: 我々は最先端の微調整型変圧器ネットワークの動作について検討する。
我々のアプローチは、LLM内のニューロンの探索に基づく層間層解析である。
ネットワークのアクティベーションの中で、既知の人間工学的・意味的な特徴の個人またはグループを特定する。
- 参考スコア(独自算出の注目度): 22.875174888476295
- License:
- Abstract: Transformer networks, especially those with performance on par with GPT models, are renowned for their powerful feature extraction capabilities. However, the nature and correlation of these features with human-engineered ones remain unclear. In this study, we delve into the mechanistic workings of state-of-the-art, fine-tuning-based passage-reranking transformer networks. Our approach involves a probing-based, layer-by-layer analysis of neurons within ranking LLMs to identify individual or groups of known human-engineered and semantic features within the network's activations. We explore a wide range of features, including lexical, document structure, query-document interaction, advanced semantic, interaction-based, and LLM-specific features, to gain a deeper understanding of the underlying mechanisms that drive ranking decisions in LLMs. Our results reveal a set of features that are prominently represented in LLM activations, as well as others that are notably absent. Additionally, we observe distinct behaviors of LLMs when processing low versus high relevance queries and when encountering out-of-distribution query and document sets. By examining these features within activations, we aim to enhance the interpretability and performance of LLMs in ranking tasks. Our findings provide valuable insights for the development of more effective and transparent ranking models, with significant implications for the broader information retrieval community. All scripts and code necessary to replicate our findings are made available.
- Abstract(参考訳): トランスフォーマーネットワーク、特にGPTモデルと同等の性能を持つネットワークは、強力な特徴抽出能力で有名である。
しかし、これらの特徴と人間工学的特徴との性質と相関性はいまだに不明である。
本研究では,最先端の微調整型変圧器ネットワークの機構について検討する。
我々のアプローチは、ネットワークのアクティベーション内で既知の人間工学的・意味的な特徴の個人またはグループを特定するために、LLM内のニューロンを探索ベースで層単位で解析することである。
語彙、文書構造、クエリ文書間相互作用、高度なセマンティック、インタラクションベース、LLM特有の特徴など、幅広い機能について検討し、LLMにおけるランキング決定を駆動する基盤となるメカニズムについてより深く理解する。
以上の結果から,LSMアクティベーションに顕著に表される特徴と,特に欠落している特徴の集合が明らかとなった。
さらに,低関連性クエリと高関連性クエリを処理したり,アウト・オブ・ディストリビューションクエリやドキュメントセットに遭遇する場合に,LCMの異なる挙動を観察する。
これらの特徴をアクティベーション内で検証することにより、ランキングタスクにおけるLLMの解釈可能性と性能を向上させることを目指している。
本研究は,より効果的で透明なランキングモデルの開発に有用な知見を提供するとともに,より広範な情報検索コミュニティに重要な意味を持つ。
私たちの発見を再現するために必要なスクリプトとコードは、すべて利用可能です。
関連論文リスト
- Beyond Binary: Towards Fine-Grained LLM-Generated Text Detection via Role Recognition and Involvement Measurement [51.601916604301685]
大規模言語モデル(LLM)は、オンライン談話における信頼を損なう可能性のあるコンテンツを生成する。
現在の手法はバイナリ分類に重点を置いており、人間とAIのコラボレーションのような現実のシナリオの複雑さに対処できないことが多い。
バイナリ分類を超えてこれらの課題に対処するために,LLM生成コンテンツを検出するための新しいパラダイムを提案する。
論文 参考訳(メタデータ) (2024-10-18T08:14:10Z) - ELF-Gym: Evaluating Large Language Models Generated Features for Tabular Prediction [33.03433653251314]
大規模言語モデル(LLM)を評価するためのフレームワークであるELF-Gymを提案する。
私たちは、トップパフォーマンスチームによって使用される251の"ゴールド"機能を含む、歴史的なKaggleコンペティションから、新たなデータセットをキュレートしました。
ベストケースのシナリオでは、LLMがゴールデン機能の約56%を意味的にキャプチャできるが、より要求の高い実装レベルでは、オーバーラップは13%に減少する。
論文 参考訳(メタデータ) (2024-10-13T13:59:33Z) - FactorLLM: Factorizing Knowledge via Mixture of Experts for Large Language Models [50.331708897857574]
本稿では,高度に訓練された高密度FFNを余分なサブネットワークに分解する新しいアプローチであるFacterLLMを紹介する。
FactorLLMは、最大85%のモデル性能を確保しながら、推論速度を30%以上増加させながら、ソースモデルに匹敵するパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-08-15T16:45:16Z) - Hide and Seek: Fingerprinting Large Language Models with Evolutionary Learning [0.40964539027092917]
本稿では,Large Language Model (LLM) モデルの指紋認証のための新しいブラックボックス手法を提案する。
モデルの正しいファミリーを特定する際には, 72%の精度が得られた。
この研究は、LLMの振る舞いを理解するための新しい道を開き、モデル帰属、セキュリティ、そしてAI透明性の幅広い分野に重大な影響を与える。
論文 参考訳(メタデータ) (2024-08-06T00:13:10Z) - CoMMIT: Coordinated Instruction Tuning for Multimodal Large Language Models [68.64605538559312]
本稿では,MLLM命令のチューニングを理論的・経験的両面から解析する。
そこで本研究では,学習バランスを定量的に評価する尺度を提案する。
さらに,MLLMの生成分布の更新を促進する補助的損失正規化手法を提案する。
論文 参考訳(メタデータ) (2024-07-29T23:18:55Z) - Towards Modeling Learner Performance with Large Language Models [7.002923425715133]
本稿では,LLMのパターン認識とシーケンスモデリング機能が,知識追跡の領域にまで拡張できるかどうかを検討する。
ゼロショットプロンプト(ゼロショットプロンプト)とモデル微調整(モデル微調整)の2つの手法と,既存のLLM以外の知識追跡手法を比較した。
LLMベースのアプローチは最先端のパフォーマンスを達成しないが、微調整のLLMは素早いベースラインモデルの性能を上回り、標準的なベイズ的知識追跡手法と同等に機能する。
論文 参考訳(メタデータ) (2024-02-29T14:06:34Z) - Beyond the Known: Investigating LLMs Performance on Out-of-Domain Intent
Detection [34.135738700682055]
本稿では,ChatGPTで表される大規模言語モデル(LLM)を包括的に評価する。
LLMには強力なゼロショット機能と少数ショット機能があるが、フルリソースで微調整されたモデルに比べれば依然として不利である。
論文 参考訳(メタデータ) (2024-02-27T07:02:10Z) - LLM Inference Unveiled: Survey and Roofline Model Insights [62.92811060490876]
大規模言語モデル(LLM)推論は急速に進化しており、機会と課題のユニークなブレンドを提示している。
本調査は, 研究状況を要約するだけでなく, 屋上モデルに基づく枠組みを導入することによって, 従来の文献レビューから際立っている。
このフレームワークは、ハードウェアデバイスにLSMをデプロイする際のボトルネックを特定し、実用上の問題を明確に理解する。
論文 参考訳(メタデータ) (2024-02-26T07:33:05Z) - Vision-Language Instruction Tuning: A Review and Analysis [52.218690619616474]
VLIT(Vision-Language Instruction Tuning)は、純粋なテキスト命令チューニングよりも複雑な特徴を示す。
既存のVLITデータセットの詳細な分類と、高品質なVLITデータが持つべき特性を識別する。
これらの特徴を既存のVLITデータ構築プロセスに導出する原理として取り入れることで、我々は広範囲な実験を行い、調整されたマルチモーダルLCMの性能に対する肯定的な影響を検証した。
論文 参考訳(メタデータ) (2023-11-14T14:02:32Z) - Improving Open Information Extraction with Large Language Models: A
Study on Demonstration Uncertainty [52.72790059506241]
オープン情報抽出(OIE)タスクは、構造化されていないテキストから構造化された事実を抽出することを目的としている。
一般的なタスク解決手段としてChatGPTのような大きな言語モデル(LLM)の可能性にもかかわらず、OIEタスクの最先端(教師付き)メソッドは遅れている。
論文 参考訳(メタデータ) (2023-09-07T01:35:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。